Pumping Lemma for CFL

Let L be a context free language. Then, there is a constant n, depending only on L, such that if z is any string in L and $|z| \geq n$, then we may write $z = uvwxy$ such that

1) $|vx| > 0$
2) $|vwx| \leq n$
3) uv^iwx^iy is in L for all $i \geq 0$.
Applications of Pumping Lemma

- Pumping lemma for CFL is mainly used to prove some language is not a context free language.
 1. Select the language L you wish to prove non-CFL.
 2. Pick up an integer n.
 3. Select a string z in L. |z| must not be smaller than n.
 4. Break z into u, v, w, x, y in all possible ways so that |vwx| <= n and |vx| >= 1.
 5. Prove uv^iw^x^y for some i, for example 0, is not in L. From pumping lemma for CFL, L is not a context free language.
Example

1. Prove $a^ib^ic^i$ is not a CFL language.
2. Let’s consider the string $a^nb^nc^n$.
3. For any u, v, w, x, and y such that $|vwx| \leq n$ and $|vx| \geq 1$.
 v and x cannot contain both a and c.
 v and x contain a’s only, uv^0wx^0y has fewer a’s than c’s.
 v and x contains a’s and b’s, uv^0wx^0y has fewer a’s and b’s than c’s.
 Similarly, we can show that for other combinations of v and x, uv^0wx^0y does not belong to $a^ib^ic^i$.
Closure Properties of Regular Languages

• Theorem:
 If \(L \) is a context-free language over alphabet \(\Sigma \), and \(s \) is a substitution on \(\Sigma \) such that \(s(a) \) is a CFL for each \(a \) in \(\Sigma \), then \(s(L) \) is a CFL.

• Theorem:
 The context free languages are closed under union, concatenation, and Kleene closure.

• Theorem:
 The context free languages are not closed under intersection and complementation.

• Theorem:
 If \(L \) is a CFL and \(R \) is a regular language, then \(L \cap R \) is CFL

• Theorem:
 If \(L \) is a CFL and \(R \) is a regular language, then \(L - R \) is CFL
Decidable Problems

- If a CFL language is empty
- If a given string belongs to a CFL.
- If a CFL language is finite
- If a CFL language is infinite

- Equivalence of two CFL languages is not decidable.
Emptiness, Finiteness, and Infiniteness

- A CFL language is empty if and only if no terminal string can be derived from S.

- A CFL language is finite if and only if the graph constructed as described below has no cycle.
 - Convert the context free grammar to CNF with no useless symbols and ε-productions
 - Each variable is a vertex
 - There is an edge from A to B if there is a production of the form A->BC or A->CB.