Algebraic Laws for Regular Expressions

• Associativity
 – \((L + M) + N = L + (M + N)\)
 – \((LM)N = L(MN)\)

• Commutativity
 – \(L + M = M + L\)
 – \(LM \neq ML\)

• Identities and Annihilators
 – \(\phi + L = L + \phi = L\)
 – \(\epsilon L = L = L\)
 – \(\phi L = L\phi = \phi\)
Algebraic Laws for Regular Expressions

• Distributive Laws
 – $L(M + N) = LM + LN$
 – $(M + N)L = (M + N)L$

• Idempotent Law
 – $L + L = L$

• Laws Involving Closures
 – $(L^*)^* = L^*$
 – $\phi^* = \epsilon$
 – $\epsilon^* = \epsilon$
 – $L^+ = LL^* = L*L$
 – $L^* = L^+ + \epsilon$
Test Regular Expression Law

• Test whether $E = F$:
 – Convert E and F to concrete regular expressions C and D, respectively, by replacing each variable by a concrete symbol
 – Test whether $L(C) = L(D)$. If so, then $E = F$ is a law, and if not, then it is not a law.

• This only works for the three basic operations. This may not work for additional operations.
Pumping Lemma

Let L be a regular language. Then, there is a constant n such that if z is any string in L, and $|z| \geq n$, there exist three strings u, v, w so that

- $z = uvw$
- $|uv| \leq n$
- $|v| \geq 1$
- for all $i \geq 0, uv^i w$ is in L.
Applications of Pumping Lemma

- Pumping lemma is mainly used to prove some language is not a regular language.
 1. Select the language L you wish to prove nonregular.
 2. Pick up any integer n.
 3. Select a string z in L. $|z|$ must be larger than n.
 4. Break z into u, v, and w in all possible ways so that $|uv| \leq n$ and $|v| \geq 1$.
 5. Prove uv^iw for a given i for example 2 is not in L. From pumping lemma, L is not a regular language.
Example

1. Prove a^ib^i is not a regular language.
2. Assume that a^ib^i is accepted by an FA with n states.
3. Let’s consider the string a^nb^n.
4. For any u, v, w such that $|uv| \leq n$ and $|v| \geq 1$. We have $u = a^l$ and $v = a^m$ ($m \geq 1$) and $w = a^kb^n$ and $l + m + k = n$.
5. $uv^2w = a^l a^m a^m a^k b^n = a^{l+2mk} b^n$ is not in L, because $l+2m+k > n$. According pumping lemma, L is not a regular language.
Closure Properties of Regular Languages

• A class of languages is closed under a particular operation if application of this operation to languages in this class results in a language also in this class.

• Theorem:
 The regular languages are closed under union, concatenation, and Kleene closure.

• Theorem:
 The regular languages are closed under complementation.

• Theorem:
 The regular languages are closed under intersection.