Finite Automata with ε-Moves

- A NFA M is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$
 - $Q = \{q_0, q_1, \ldots, q_n\}$ is a finite set of states
 - Σ is a finite input alphabet
 - δ is a transition function mapping $Q \times (\Sigma \cup \{\varepsilon\})$ to 2^Q.
 2^Q is the power set of Q, the set of all subsets of Q.
 - $q_0 \in Q$ is the initial state.
 - $F \subseteq Q$ is the set of final states.
\(\varepsilon\)-Closures

- \(\varepsilon\)-closure of a state \(q\) is the set of states that can be reached from \(q\) along a path in which all arcs are labeled \(\varepsilon\).

- \(q\) is in \(\varepsilon\)-closure(\(q\))

- If \(p\) is in \(\varepsilon\)-closure(\(q\)) and there is an \(\varepsilon\) transition from \(p\) to \(r\), then \(r\) is in \(\varepsilon\)-closure(\(q\))
Transition Function \(\hat{\delta} \) on String

- \(\hat{\delta} \) is a transition function mapping \(Q \times \Sigma^* \) to \(Q \).

1. \(\hat{\delta}(q, \varepsilon) = \varepsilon\text{-closure}(q) \)
2. For all strings \(w = xa \), where \(x \) is a string and \(a \) is symbol in \(\Sigma \)
 - \(\hat{\delta}(q, x) = \{p_1, \ldots, p_k\} \)
 - \(\delta(p_1, a) \cup \delta(p_2, a) + \ldots + \delta(p_k, a) = \{r_1, \ldots, r_m\} \)
 - \(\hat{\delta}(q, w) = \varepsilon\text{-closure}(r_1) + \ldots + \varepsilon\text{-closure}(r_m) \)
Language Defined by An ε-NFA

- A string x is said to be accepted by an ε-NFA $M = (Q, \Sigma, \delta, q_0, F)$ if $\hat{\delta}(q_0, x) = P$ and P contains some final state.

- A language accepted by ε-NFA M, designated $L(M)$, is the set $\{x | \hat{\delta}(q_0, x) \text{ contains some state in } F\}$
Equivalence of NFA’s with and Without ε-Move

• Theorem:
 Let L be a set accepted by a nondeterministic finite automaton with ε-Moves. Then there exists a deterministic finite automaton without ε-Move that accepts L.

• Theorem:
 Let L be a set accepted by a deterministic finite automaton without ε-Move. Then there exists a nondeterministic finite automaton with ε-Moves that accepts L.
Regular Language

• A language is regular if it can be defined by a DFA.

• Three equivalent machines:
 – DFA
 – NFA
 – ε-NFA
Regular Expressions

• Regular expression is an algebraic approach for defining a language over an alphabet.

• Each regular expression defines a language, namely a set of strings over an alphabet.

• Only a subset of languages, regular languages, can be defined by regular expressions.
Regular Expression Operators

• Union: +
 – Examples: \((0 + 1); (ab + cd)\)

• Concatenation: •
 – Examples: \(01•10 = 0110\)

• Star Closure: * (repeat 0 or more times)
 – \((00)^*\): the set of all strings with even number of 0s, including \(\varepsilon\).
Regular Expressions

• Regular expression over the alphabet Σ.

1. ε, ϕ, $a \in \Sigma$ are regular expressions
2. if r and s are regular expressions, then
 - $r+s$ is a regular expression
 - rs is a regular expression
 - r^* is a regular expression
3. r is a regular expression if and only if r can be derived from 1 by a finite number of applications of 2.

$$r^+ = rr^*$$
Precendence

- * has the highest precedence
- Concatenation is the next
- + has the lowest precedence

- Examples:
 - ab*+c = (a(b)*)+c
Regular Expression Examples

- $(0+1)^*$
- $(a+b)^*a(a+b)^*$
- $b(a+b)^*b$
Language Defined by Regular Expression

- let L(r) represents the language defined by the regular expression r.
 1. \emptyset is the language defined by ε
 2. ϕ is the language defined by ϕ
 3. $\{a\}$ is the language defined by a
 4. $L(r+s) = L(r) \cup L(s)$
 5. $L(rs) = L(r)L(s)$
 6. $L(r^*) = L(r)^*$
Examples

• (0+1)*
 all binary strings

• (a+b)*a(a+b)*
 all strings with at least one \(a \)

• b(a+b)*b
 all strings starting with a \(b \) and ending with a \(b \)
Examples

• an odd number of a’s followed by an even number of b’s

• no more than 3 a’s and ends with ab

• binary strings with no substring 001
Equivalence

• Two regular expressions are equivalent if and only if the languages defined by the two expressions are the same.

• Examples:
 - $a^*(a+b)^* = (a+ba)^*$
 - $(a*b^*)^* = (a+b)^*$
Finite Languages

- Finite languages (languages with finite number of strings) are regular

- Assume L is a finite language with n strings s_1, \ldots, s_n. A regular expression defining L is $s_1^+ \ldots + s_n$
Equivalence of Finite Automata and Regular Expressions

• Theorem:
 Let L be a set accepted by a finite automaton. Then there exists a regular expression that accepts L.

• Theorem:
 Let L be a set accepted by a regular expression. Then there exists a finite automaton that accepts L.