Recursive Enumerable Languages

• Recursive Enumerable Languages
 A language that is accepted by a TM is said to be recursively enumerable (r.e.). Enumerable means that all strings of a recursive enumerable could be listed by a TM.

• A TM may divide all strings on Σ^* into three sets:
 – all accepted strings (strings on which TM halts)
 – all strings on which TM crashes
 – all strings on which TM loops
Recursive Languages

- Recursive Languages
 A language that is accepted by at least one TM that halts or crashes on all strings is called recursive language. That is no string loops on the TM.

- A recursive language is a recursive enumerable language but a recursive enumerable may not be a recursive language
Properties of r.e. and Recursive Languages

• Theorem 1
 – The complement of a recursive language is recursive.

• Theorem 2
 – The union of two recursive languages is recursive.

• Theorem 3
 – The union of two recursive enumerable languages is recursive enumerable.
Properties of r.e. and Recursive Languages

• Theorem 4
 – If a language L and its complement L' are both recursive enumerable, then L (and hence L') is recursive.

• From theorem 1 and 4, we may derive one of the following
 – both L and L' are recursive
 – neither L nor L' is r.e.
 – one of L and L' is r.e., but not recursive; the other is not r.e.
TM Code

- Encode a TM in a string over \(\{0, 1\}^* \)
- Assume \(M = (\{q_1, q_2, \ldots, q_n\}, \{0, 1\}, \{0, 1, \Delta\}, \delta, q_1, \{q_2\}) \)
- States are represented as numbers 1 to n.
- Symbols 0, 1, and \(\Delta \) are represented as 1, 2, and 3 respectively.
- Head moves L and R are represented as 1 and 2 respectively.
TM Code

- Each move $\delta(i, j) = (k, l, m)$ where i and $k = 1, \ldots, n$, j and $l = 1, 2, \text{ or } 3$, and $m = 1 \text{ or } 2$, is encoded as $0^{i}10^{j}10^{k}10^{l}10^{m}$
- A TM is a set of moves and may be represented as $111\text{code}_111\text{code}_211\ldots11\text{code}_t111$
- Each string may be interpreted as the code for at most one TM.
- Not all strings can be interpreted as a TM
- A TM may have many different codes.
Non-Recursive Enumerable Language

- Let $L_d = \{w | w$ doesn’t represent any TM or w is not accepted by the TM represented by $w\}$
- Assume that L_d is r.e. and M is the TM that accepts L_d.
- Let w_m is the code representing M.
- If w_m is in L_d, w_m must be accepted by M because M accepts L_d. If M accepts w_m, then w_m is not in L_d. It is a contradiction.
- If w_m is not in L_d, w_m must not be accepted by M because M accepts L_d. If M does not accept w_m, then w_m is in L_d. It is a contradiction. Therefore no TM accepts L_d.
Universal TM

• A universal TM (UTM) is TM that accepts an input string composed of two parts: a TM code representing M followed by an input string w for M.
• The UTM accepts its input string if M accepts w.
• The UTM crashes on its input string if M crashes on w.
• The UTM loops on its input string if M loops on w.
• UTM exists.
Non-Recursive Language

• Let \(L_u = \{w | w \text{ represents a TM } M \text{ and } M \text{ accepts } w \} \)
• \(L_u \) is recursive enumerable.
• \(L_u \) is not recursive.
 – \(L_u \) is complement of \(L_d \).
 – If \(L_u \) is recursive, then \(L_d \) is recursive according to Theorem 1.
• Theorem
 – The complement of a recursive enumerable language may not be recursive enumerable.
Undecidable

- The following properties of r.e. languages are not decidable
 - A TM halts
 - A TM accepts ε.
 - A TM accepts no string (emptiness).
 - A TM accepts a finite number of strings (finiteness)
 - A TM accepts a regular language
 - A TM accepts a context-free language.