Course Topics

• **Computer Theory**
 – Formal Languages
 – Computational Models/Grammars/Regular Expressions
 – Complexity/Intractability
 – Computability/Decidability

• **Applications**
 – Compilers and programming languages
 – Computer design
 – Algorithm analysis
 – Artificial intelligence and human language processing
 – Parsers
Representations

- **Automaton/Turing Machine**
 - Automaton/Turing machine is a computational model to recognize if a string is in a language

- **Grammar**
 - Grammar is a set of rule describing a language

- **Regular Expression**
 - Regular expression describes a set of patterns which form a language.
Formal Proof

- Deductive Proof
- Proof by contradiction
- Counterexamples
- Inductive Proof
- Constructive Proof
- Set Equivalence Proof
Deductive Proof

- P => Q
- If P is true, then Q is true
- Not Q => Not P
Proof by contradiction and with Counterexamples

• Given P => Q and P, prove Q.
• Assume Q is false and derive contradiction such as not P.

Prove a false statement with a counter example.
Inductive Proof

• Induction on integers
 – Basis: prove P is true for a particular integer i.
 – Inductive step: for any $n > i$ if $P(n)$ is true, prove $P(n+1)$ is true.

• Structural Induction
 – Prove statements on recursively defined structures such as trees and expressions.
Constructive and Set Equivalence Proof

• Constructive Proof
 – Prove a language is regular by constructing an automaton accepting the language

• Set Equivalence Proof
 – Two sets, S1 and S2 are equivalent if they contain same elements.
 – If e is an element of S1, it is also an element of S2.
 – If e is an element of S2, it is also an element of S1.
Set

• A set is a collection of objects without repetition.
• Set specification
 – list all members: \{0, 1\}
 – use a predicate: \{x | P(x)\} means for all x such that P(x) is true.
 \{i | i is an integer and i mod 2 = 0\} is the set of all even integers.
• A set may have finite or infinite number of members.
• Set relations
 – subset: a set A is a subset of B, denoted by, \(A \subseteq B \) if all members of A are also members of B.
 – Equality: a set A is equal to another set B if they contain the same members.
Set Operations

- Union:
 - $A \cup B = \{x | x \text{ is in } A \text{ or } x \text{ is in } B\}$

- Intersection:
 - $A \cap B = \{x | x \text{ is in } A \text{ and } x \text{ is in } B\}$

- Difference:
 - $A - B = \{x | x \text{ is in } A \text{ and } x \text{ is not in } B\}$

- Complement
 - $\overline{A} = \{x | x \text{ is not in } A\}$
Alphabet

• An alphabet is a finite set of symbols, usually denoted by Σ.

• Examples:

 Binary alphabet $\Sigma = \{0, 1\}$
 $\Sigma = \{a, b\}$
 $\Sigma = \{a, b, c, d, e, \ldots, x, y, z\}$
String

- A string is a finite sequence of symbols of Σ.
- Examples
 - string
 - cs5104
- Length of a string w
 - the number of symbols in the string and denoted by $|w|$
- Empty string ε
 - the string with no symbol and $|\varepsilon| = 0$
String Operations

- Concatenation:
 \(xy \) is the string with \(x \) followed by \(y \).
 Example: \(x = cs \) and \(y = 510 \),
 \(xy = cs5104 \)

- Power of string
 - \(x^0 = \varepsilon \)
 - \(x^1 = x \)
 - \(x^n = xx^{n-1} \)
 - Example: \(x = 01 \), \(x^4 = 01010101 \)
Substrings

- Substring
 A string s is a substring of a string x if there exist strings y and z such that $x = ysz$.
 51 is a substring of $cs5104$ and cs is also a substring of $cs5104$.

- Prefix
 when $x = sz$, s is called a prefix of x. cs is a prefix of $cs5104$

- Suffix
 when $x = ys$, s is called a suffix of x. 5104 is a suffix of $cs5104$
String Reversal

- The reversal of x, denoted by x^R, is defined as follows.
 - $x^R = \varepsilon$
 - $x^R = a(u^R)$ if $x = ua$ and a is symbol and u is a string.
 - Example:
 $(abc)^R = (\overline{ab}c)^R = c(ab)^R = c((a)b)^R = cb(a)^R = cba$
 - For strings x and y, $(xy)^R = y^Rx^R$
Power of Alphabets

- Power n of an alphabets is the set of all strings with length n.

\[\Sigma^n = \{ x \mid |x| = n \} \]

\[\Sigma^* = \Sigma^0 \cup \Sigma^1 \cup \Sigma^2 \cup \ldots \]

Σ^* contains all finite strings over Σ. Σ^* is infinite, but it contains no infinite string.
Language

• Language
 – a language is a set of strings from a given alphabet

• Two special languages
 – empty language: $\emptyset = \{\}$, language with no string
 – language with the empty string $\{\varepsilon\}$

• Examples
 – palindrome over the alphabet $\{a, b\}$
 – strings with equal number of 0s and 1s over the alphabet $\{0, 1\}$

• Formal language
 – languages strictly defined with rules
Language

- Any $L \subseteq \Sigma^*$ is a language. Namely, a language is a subset of all strings of an alphabet.

- Examples:
 - $\emptyset = \{\}$
 - $\{\varepsilon\}$
 - Σ^*
 - The set of strings containing an equal number of 0s and 1s.
Formal Language

<table>
<thead>
<tr>
<th>Computation Model</th>
<th>Formal Language</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finite State Machines</td>
<td>Regular Language</td>
<td>Text processing, lexical analysis</td>
</tr>
<tr>
<td>Pushdown Automata</td>
<td>Context Free Language</td>
<td>Compiler parsing</td>
</tr>
<tr>
<td>Turing Machines</td>
<td>Recursive Languages</td>
<td>Undecidability, complexity</td>
</tr>
</tbody>
</table>
Kleene Closure (Star Closure)

• For two languages L_1 and L_2 over Σ, L_1L_2 is the concatenation of L_1 and L_2.

 \[L_1L_2 = \{xy|x \text{ is in } L_1 \text{ and } y \text{ is in } L\} \]

• $L^0 = \{\varepsilon\}$, $L^1 = L$, $L^2 = LL$, …, $L^n = L \ L^{n-1}$

• Kleene closure (star closure):
 \[L^* = L^0 U L^1 U L^2 U \ldots \]

• $L^+ = L^1 U L^2 U \ldots$

• $L^* = L^{**}$
 – Prove: $L^* \subseteq L^{**}$ and $L^{**} \subseteq L^*$
Recursive Definition

• A recursive definition of a set is a method to specify a set. It defines a set by specifying members of the set using previously defined members.

• Recursive definitions
 – base case definition
 – recursive definition
 – no other objects in the set
Recursive Definition Examples

• Odd integers
 – base case: 1 is an odd integer.
 – recursive definition: if n is odd, then n+2 is odd.
 – no other objects are odd.

• All binary strings with even number of symbols
 – base case:
 – recursive definition:
 – no other objects in the set
Problems

• How to define a language formally.
 – regular expression
 – grammars

• Given a language L and string w, how to decide if w is a string of L.
 – Automata