CS5104 Assignment 4
Due: Wednesday, April 7

1. Consider the CFG

 \[S \Rightarrow aX \]
 \[X \Rightarrow aX|bX|\varepsilon \]

 What is the language this CFG generates?

Solution:
\[a(a+b)^* \]

2. Consider the CFG

 \[S \Rightarrow XaXaX \]
 \[X \Rightarrow aX|bX|\varepsilon \]

 What is the language this CFG generates?

Solution:
\[(a+b)^*a(a+b)^*a(a+b)^* \]

3. Find a CFG for each of the languages defined by the following regular expressions:

 a. \[ab^* \]
 b. \[a^*b^* \]
 c. \[(baa + abb)^* \]

Solutions:
 a) \[S \Rightarrow a | Sb \]
 b) \[S \Rightarrow XY \]
 \[X \Rightarrow aX | \varepsilon \]
 \[Y \Rightarrow bY | \varepsilon \]
 c) \[S \Rightarrow SS | baa | abb | \varepsilon \]

4. Write a CFG to generate the language MOREA of all strings that have more a’s than b’s.

Solution:
\[S \Rightarrow SS | EXE \]
\[X \Rightarrow aX | a \]
\[E \Rightarrow aB | bA \]
\[A \Rightarrow a | aS | bAA \]
B -> b | bS | aBB

5. Show that the following CFGs are ambiguous by finding a word with two distinct parse trees.
 i. S -> SaSaS|b
 ii. S -> aSb|Sb|Sa|a.

Solution:
 i) babababab
 ii) aab

6. Build a PDA for the language \{a^mb^na^mb^n | n > 0 and m > 0\}

7. Build a PDA for the language \{a^{2n}b^n | n > 0\}

8. Build a PDA for the language \{a^lb^mc^n | l, m, n > 0 and l + m = n\}