
Lien-Fu Lai
Department of Computer Science and Information Engineering

National Changhua University of Education
Changhua City 500, Taiwan

lflai@cc.ncue.edu.tw

Jing Dai Chang-Tien Lu
Department of Computer Science

Virginia Polytechnic Institute and State University
7054 Haycock Road, Falls Church, VA 22043

{daij, ctlu}@vt.edu

A Concurrency Control Protocol for Continuously Monitoring Moving Objects

Abstract—The increasing usage of location-aware devices, such
as GPS and RFID, has made moving object management an
important task. Especially, being demanded in real-world
applications, continuous query processing on moving objects
has attracted significant research efforts. However, little
attention has been given to the design of concurrent continuous
query processing for multi-user environments. In this paper, we
propose a concurrency control protocol to efficiently process
continuous queries over moving objects on a B-tree-based
framework. The proposed protocol integrates link-based and
lock-coupling strategies, and is proven to assure serializable
isolation, data consistency, and deadlock-free for continuous
query processing. Concurrent operations including continuous
query, object movement, and query movement are protected
under this protocol. Experimental results on benchmark data
sets demonstrated the scalability and efficiency of the proposed
concurrent framework.

I. INTRODUCTION

Moving object management has attracted significant
research efforts due to the wide usage of location-aware
devices. The movement of vehicles, planes, and people can be
traced, stored, and queried in moving object management
systems. For example, vehicle tracking systems [1] track and
display moving vehicles in real-time; flight monitoring
systems [2] trace thousands of flying airplanes. Systems like
these require spatial-temporal techniques to handle
continuous moving objects. Among the tasks of moving
object management, continuous queries keep refreshing the
objects within the monitoring ranges of mobile queries.
Examples of continuous query include “tracking all the patrol
vehicles within 2 miles of the Inauguration Parade,” and
“reporting all the ships within 10 miles of this Coast Guard
helicopter.” Several continuous query processing techniques
have recently been proposed [3-5].

The correctness of continuous queries on moving objects
has to be assured by a well-designed concurrency control
protocol. Figure 1 gives an example of inconsistent query
results. In this example, a police vehicle Q keeps tracking all
the buses within a given range of 0.5 mile. t1 and t2 are two
consecutive query report timestamps. A and B are two buses 1
mile away from each other, driving in the same direction
towards the police vehicle. We assume that all location
updates are submitted on time, and the query results are
retrieved every time after the location updates at that
timestamp are submitted. Without a concurrency control
protocol in place, these location updates and query reports in
the database may exhibit inconsistent status. Some possible
query result sets of Q at t2 could be Ø, {A}, {B}, or {A,B},
within which only {A} is correct with respect to their actual

locations at t2. The situation that returns an empty result set at
t2 happens when Q is evaluated right after A deletes its old
location, and the results of Q are reported before any other
result updates related to Q. It is called pseudo disappearance
[6], because the bus A seems disappeared in Q during its
movement. B will be returned at time t2 when B has updated
its new location in the result set of Q, but Q’s current results
are reported before Q updates its new range. This scenario is
called back order, where the query seems staying at its
previous position while some objects have already updated
their locations. Back order may also result in an output {A,B}
at t2, where only B is back ordered and A is in normal status.
In contrast to back order, another scenario is named pre-
order, in which the queries are updated while some location
updates for objects are delayed. In this example, pre-order on
A will output {A} as the result of Q at t2, because in this
situation, Q evaluates and outputs its results before the new
location of A is updated in database, and both <A,t1> and
<A,t2> intersect with <Q,t2>. Further detailed discussion is
provided in Section III. All the above inconsistent scenarios
can be prevented by a well designed concurrency control
protocol.

Figure 1. Inconsistency of continuous query w/o concurrency control.

Because of their efficient update and mature
implementations, spatial access methods based on the B-tree
are suitable for moving object management [7]. However, the
continuous queries on moving objects bring two challenges to
the concurrency control on B-tree-based databases: 1).
Continuous monitoring: The data in query windows should be
persistently secured to provide serializable isolation for
concurrent operations; 2). Frequent updates: Locations of the
objects in the database, as well as the query ranges, need to be
updated frequently, which could cause read-write conflicts on
the index and data pages. In order to efficiently process

<Q, t1> <Q, t2>

<B, t1> <B, t2>

Correct result for Q at t2: A
Possible results if without concurrency control:

Pseudo disappearance: on A or A&B Ø, on B {A};
Back order: on A Ø, on B {A,B}, on A&B {B};
Pre-order: on A or B or A&B {A}.

<A, t1> <A, t2>

2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware

978-0-7695-3650-7/09 $25.00 © 2009 IEEE

DOI 10.1109/MDM.2009.24

132

2009 Tenth International Conference on Mobile Data Management: Systems, Services and Middleware

978-0-7695-3650-7/09 $25.00 © 2009 IEEE

DOI 10.1109/MDM.2009.24

132

location updates and continuous queries, multiple indices can
be applied to index objects, queries, and results accordingly
[3]. The existing B-tree-based concurrency control techniques
are not capable of providing serializable isolation on
operations involving multiple indices. In addition, the popular
versioning approaches for transaction management [8] are not
feasible for frequent updates in moving object management.

This paper proposes a concurrency control protocol for
concurrent spatial operations on moving objects based on the
B-tree and Space-Filling Curves (SFC) [9]. It supports
concurrent continuous query processing involving multiple
indices, and avoids pseudo disappearance, back order, and
pre-order. The major contributions of this work are as
follows:
• Propose a concurrent continuous query processing

approach for a B-tree-based framework;
• Fuse lock-coupling and link-based approaches to protect

concurrent object updates, query updates, and continuous
queries;

• Prove that serializable isolation, data consistency, and
deadlock-free are guaranteed in the proposed framework;

• Validate the scalability and efficiency of the proposed
concurrency control protocol by a set of extensive
experiments on benchmark data sets.
The rest of this paper is organized as follows. Section II

surveys the existing work on moving object management and
concurrency control protocols. The preliminary of the
proposed concurrent continuous query processing is discussed
in Section III. Section 0 proposes the concurrent continuous
query processing algorithms. The correctness proof is
presented in Section V, and the experiment results are
illustrated in Section VI. Finally, this work is concluded in
Section VII.

II. RELATED WORK

This section reviews existing techniques for B-tree-based
moving object access methods, continuous query processing
techniques, and concurrency control protocols for B-trees.

Benefitting from inexpensive update compared to R-trees,
several spatial-temporal indexing structures [7, 10-12] based
on B-trees have been proposed to manage moving objects
and process spatial-temporal queries. Among these
approaches, the Bx-tree [11] uses timestamps to partition the
B+-tree, and each partition indexes the locations of the
objects within a certain period. Because each moving object
is modeled as a linear function of location and velocity, the
Bx-tree can not only handle the queries on current locations,
but also answer the spatial queries for the near future. The
BBx-tree [7] extends the indexing ability of the Bx-tree by
supporting spatial queries on past locations. It applies a
forest of trees; each tree corresponds to a certain time period.
Queries with time and space constraints can be answered by
the BBx-tree. The Bdual-tree [12] improves the query
performance of the Bx-tree on moving objects by indexing
both the locations and velocities. Dual space transformation
is applied in the Bdual-tree for efficient query access.

A straightforward approach to answer continuous queries
is to process these queries as range queries periodically.
However, this approach is not feasible when the number of
continuous queries is large. Several approaches based on R-
trees or hash tables have been proposed to answer the
continuous moving range queries over moving objects by
indexing both objects and queries. SINA [3] manages objects
and queries by using hashing techniques, and incrementally
processes positive and negative updates. Another approach,
MAI [5], constructs motion-sensitive indices for objects and
queries by modeling their movements, so that prediction
queries for the near future can be supported. A generic
framework for continuous queries on moving objects [4] has
been proposed to optimize the communication and query
reevaluation costs due to frequent location updates.

Concurrency control protocols [13-16] have been
designed to ensure the consistency of B-trees under
simultaneous non-spatial operations. These protocols can be
categorized into link-based and lock-coupling approaches.
The link-based protocols, represented by the Blink-tree [14,
15], apply only exclusive locks in update operations, and
guarantee the consistency of concurrent operations based on
the global order of data. In these approaches, each tree
access follows the links from root to leaf and from left to
right to identify a search path for the queried key. The lock-
coupling approaches [13, 16] apply different lock types for
read and write operations to provide flexible concurrency
control. The lock-coupling approaches are able to provide
serializable isolation to concurrent operations, albeit require
comprehensive lock management on different levels of the
index tree. In critical scenarios such as security systems and
military applications, serializable isolation is required to
ensure accurate relative positions among the query and
objects. Although transaction management techniques can
achieve serializable isolation, unlike concurrency control
protocols for spatial indices, they tend to release the index
nodes until commit point rather than as early as possible.
Serializable isolation of the moving object management has
recently been considered in CLAM [6], which provides
concurrency control for location updates and queries on a B-
tree-based spatial access framework. However, CLAM is not
sufficient to support continuous queries, because it only
works on a single indexing tree and for one-time queries.

The concurrent continuous query processing framework
proposed in this paper applies the Blink-tree and hash
techniques to construct indices for moving objects, moving
queries, and query results, integrating multiple locking
mechanisms for efficient concurrent access on objects and
queries.

III. PRELIMINARY

Before presenting the concurrent continuous query
processing, we introduce the overall design of the proposed
framework. In this framework, serializable isolation is
supported on the concurrent spatial operations for continuous
query processing. In other words, the results of these

133133

concurrent operations are the same as the results of
sequentially processing these operations ordered by their
commit point. The access framework designed for scalable
continuous query processing captures the current locations of
the objects and queries.

To specifically describe the problem, several assumptions
for the system environment are made as follows:
• Point object: Each moving object is represented as a

spatial point; each object periodically reports its current
location to the database.

• Window query: Each moving query is represented as a
spatial box, which is the query window; each query
periodically reports its new query window to the database.

• Lock manager: There exists a lock manager to support
different lock types and maintain all the locks.
These assumptions are applicable in many real-world

applications. Based on the above assumptions, a concurrent
access framework for continuous queries is designed in the
following sections. In this framework, the supported
concurrent spatial operations are object movement, query
movement, and query evaluation. Object movement takes
object ID, old location, and new location as inputs, and
updates the object index and the affected query results.
Query movement takes query ID, old query window, and
new query window as inputs, and updates the query index
and results. Query report takes query ID as input, and
outputs the set of objects covered by the query window. The
output of a query report operation should reflect the current
committed status. An overview of the proposed indexing
structure and its concurrency control protocol is presented in
the rest of this section.

A. Indexing Structure
To process the continuous query with efficiency and

scalability, an indexing structure with one Blink-tree and two
hash tables (Q-table and R-table) is applied to index current
locations of both objects and queries. In this framework, the
Hilbert Space-Filling curve [9], which preserves the spatial
proximity of objects, divides the space into non-overlapped
cells, and maps each object into a particular cell and each
query window into a set of corresponding cells. Thus the
spatial locations of objects/queries can be represented by
one-dimensional cell IDs. The cell IDs of moving objects
can then be indexed by a Blink-tree. Each entry in the leaf
nodes of the Blink-tree points to the data page that stores the
objects in its corresponding cell.

On the other hand, the cell IDs of moving queries are
indexed using a hash table, Q-table, where the cell IDs are
hash keys and the pointers to the corresponding queries are
the contents stored in each bucket. The primary reason for
using a hash table to index the queries, rather than another
Blink-tree, is that point query is the only search on the query
index in the proposed algorithms. In addition to these
indices, another hash table, R-table, is used to store the query
results in memory. In R-table, the query IDs are used as hash

keys, and each entry stores a list of objects covered by a
particular query.

Figure 2. An example of objects and queries.

Figure 3. Blink-tree index for objects in Figure 2.

A snapshot example of moving objects and continuous
queries is illustrated in Figure 2, where a 2D Hilbert curve
with order of 3 is applied. There are six queries indicated by
letters (A, B, … F), and fourteen objects denoted by their cell
IDs. Figure 3 demonstrates a Blink-tree constructed based on
the objects in Figure 2. Each non-empty cell is indexed by a
leaf node entry in the Blink-tree. The moving objects in one
cell are stored in the same data page, or consecutive pages if
overflowed. Different from the standard B-tree, in the Blink-
tree, the tree nodes on the same level are linked from left to
right for concurrency control purpose. The Q-table for query
index corresponding to Figure 2 is shown in Figure 4. In the
Q-table, each cell covered by any query has an entry. These
entries consist of the corresponding queries, and can be
randomly accessed by a given cell ID. Figure 5 shows the R-
table for given objects and queries. Each entry of the R-table
is associated with a query, and tracks the objects covered by
that corresponding query based on the current database
status. The objects in the example are denoted in the form of
O_cellID.

Cell: 4 5 6 7 8 9 11 28 29 32 40 41 56 61
Query: A A A A A

B
A B C C D E E F F

Figure 4. Q-table for queries in Figure 2.
Query: A B C D E F
Object: O_5; O-6 O_8 O-28 O_56
Figure 5. R-table for objects and queries in Figure 2.

In this indexing framework, an object movement will
update its location in the Blink-tree, then search the Q-table
for affected queries, and finally refresh the corresponding
query results in the R-table. For example, if the object in the
cell 53 is moving to the cell 32, which is covered by the
query D, it first updates its location in the Blink-tree by

Disk Data
Pages …

5 8

18

24 39 53

50 86 1815 24 20 39 28 5348 6156

6118

61

A
B

C

D

F

E
41

1

4

2

21 22 37 26 25 38

20 23 36 27 24 39

19 18 35 28 29 34

16 17 32 31 30 33

15 12 53 10 11 52

14 13 54 9 8 55

42

40 43

45 44

46 47

51 48

50 49

57 6 56

0 3 58 5 59

61 62

60 63

7

134134

removing leaf entry 53 and adding new entry 32. Then the
Q-table is searched and D is found to cover the object. At
last, a record O_32 is inserted into the R-table under the key
D. A query movement needs to search the Blink-tree for the
objects covered by its new query range, update the range in
the Q-table, and refresh its query results in the R-table. For
instance, query E is moving towards west by one cell to
cover cells 38 and 39. The system searches the Blink-tree
using cells 38 and 39, and identifies the object in cell 39.
Then the Q-table is updated by removing entries 40 and 41,
and creating two new entries 38 and 39 with E inside. The R-
table is refreshed by inserting O_39 to the entry E. A query
report simply visits the entry in the R-table and outputs its
object list.

B. Concurrency Control Protocol
Continuous query processing requires an appropriate

concurrency control protocol to ensure correct results while
objects and queries are moving. Taking the scenario in
Figure 1 as an example, inconsistent results are caused by
incorrect processing sequences. Suppose each movement can
be decomposed into three atomic components: D for the
deletion of an old location, I for the insertion of a new
location, and R for refreshing the corresponding query
results. In addition, let qr denote the query report for Q at t2.
A processing sequence contains … A.D Q.R A.I qr

A.R … will output null as the results of Q at time t2
(pseudo disappearance on A), because A disappears in
database when Q updates its results, and there is no more
update occurs before the query report at t2. Another
inconsistent result set {B} of Q at t2 will be returned if the
processing sequence contains … B.R Q.D qr Q.I
… (back order on A and B). In this case, the bus B updates
its location and adds itself to the result set of Q before Q’s
location is updated, and the query report is processed before
Q re-evaluates its results. If a processing sequence contains
…B.R Q.I A.R qr Q.R …, both A and B will be output
as the results of Q at time t2 (back order on B). That is
because B adds itself into Q’s results based on Q’s old range,
and A keeps itself in Q’s results based on Q’s new location.
All these inconsistent processing sequences have to be
prevented by the concurrency control protocol.

The concurrency control protocol for the proposed
structure should support the concurrent spatial operations
involving the Blink-tree, Q-table, and R-table. For efficiency
and effectiveness, a concurrency control protocol combining
link-based and lock-coupling strategies is adopted. The link-
based strategy handles the operations on the Blink-tree,
whereas the lock-coupling strategy ensures the consistency
of the hash tables and between the index tree and hash tables.
The lock-coupling strategy applies read-locks and write-
locks on cells and queries, so that updates and searches can
be isolated from each other. The proposed concurrency
control protocol protects simultaneous operations from
pseudo disappearance, back order, and pre-order without
causing any deadlocks.

In order to provide serializable isolation on location
updates and continuous queries, not only the objects, queries,
and results, but also the empty SFC cells should be
appropriately protected. Therefore, the locks on the Blink-tree
nodes and continuous queries are not sufficient. Auxiliary
structures need be employed to maintain the locks on cells.

To globally manage the locks in all the operations, as
listed in TABLE 1, the lock manager maintains locks on
three structures, tree nodes, queries, and cells. Locks on tree
nodes, which assure the consistency of the tree via link-
based strategy, are all write-locks for the Blink-tree update.
Locks on queries (entries in R-table), which prevent
inconsistency between queries and query results, contain
read-locks and write-locks corresponding to each continuous
query. Locks on the cells consist of object cell locks and
query cell locks, which share the same SFC mapping but are
independent to each other. The reason of employing these
two sets of lock granules is to allow more concurrent
accesses for better throughput. Read-locks and write-locks
on cells for objects and queries are handled via two lock
maps to prevent phantom access. The locks on the cells for
objects are maintained by the Object Lock Map (OLM); the
Query Lock Map (QLM) manages the locks on the cells for
queries. Both lock maps are constructed with the same
structure and size, as illustrated in Figure 6. In each lock
map, each cell is associated with an integer to indicate the
number of current read-locks granted for this cell. If a cell is
being write-locked, -1 will be assigned to that cell in the lock
map. In addition, a queue is also used by each cell to store
pending cell locks, so that these processes can be notified
once the cell is available.

Figure 6. Example of lock map.

TABLE 1. TYPES OF LOCKS MAINTAINED.
 Tree Nodes Queries Cells

Objects Queries
R-lock √ √ √
W-lock √ √ √ √

Protection Inconsistent tree Invalid results Phantom access Phantom access
In all these locks, read-locks are compatible with each

other, while write-locks are exclusive to all the others. The
tree nodes are protected by the link-based locking strategy,
whereas the queries and cells are secured by the lock-
coupling strategy. The spatial operations for continuous
monitoring on moving objects integrated with these locks are
introduced in detail in the next section.

IV. CONCURRENT CONTINUOUS QUERY

The proposed concurrent access framework supports
object movement, query movement, and query report for
scalable continuous query processing for moving objects.

0 0 20-1 2 0 0
0 2 412 2 3 0
2 1 20 1 0 0 2
1 2 -12-1 3 2 0
0 1 600 4 2 1
0 2 22 5 3 2 -1
0 0 0-11 1 0 0
0 0 00 0 2 3 1

(Update) pid:21

(Query) pid:18; (Query) pid:20;
(Update) pid:31

135135

A. Object Movement
The operation of object movement takes the object ID,

old location, and new location of the moving object, as well
as the Blink-tree, Q-table and R-table, as input parameters.
This operation updates the object location on Blink-tree,
identifies the queries that cover either the old location or new
location from the Q-table, and refreshes the results of these
queries in the R-table. Corresponding to the above subtasks,
the object movement algorithm contains 3 phases, namely,
object location update, query search, and result refresh.

The details of the algorithm are shown in Algorithm 1.
Phase 1, object location update, first applies the SFC to
find the cells that cover the old location or the new location
of the object. After the cell IDs are determined, the algorithm
traverses the Blink-tree to locate the leaf nodes that contain
these cell IDs. Before modifying these leaf nodes, write-
locks are requested for these leaf nodes to assure consistency
on the tree and for the OLM cells involved in the movement
to avoid phantom access. The tree update function
determines whether the movement occurs within one cell,
moves to an empty cell, or empties the original cell. Based
on these situations, an optimized location update is then
performed by releasing unnecessary locks on tree nodes as
early as possible. The remaining write-locks on tree nodes
are released by the end of this phase, while the locks on
OLM cells are kept till the end of this process.

Phase 2, query search, retrieves the queries that cover
the new location or old location of the object by looking up
the Q-table. At the beginning of query search, read-locks are
requested on the QLM cells involved in the movement. Thus
the system can avoid phantom access on the query index.
Then the Q-table is accessed to retrieve the candidate queries
linked to these cell IDs. After refining the list of affected
queries by computing their topological relation with the
exact old location and new location, the queries that need to
be updated are granted write-locks, and the read-locks on
QLM cells can then be released. By the end of phase 2, the
related continuous query results have been protected from
being accessed by other simultaneous operations.

Phase 3, result refresh, modifies the entries in the R-
table to refresh the query results. In this phase, the object ID
is removed from the entries corresponding to the queries that
the object is moving from, and is added into the entries for
the queries that the object is moving to. After all the
necessary updates are completed in the R-table, the write-
locks requested in Phase 1 on the OLM cells and the write-
locks requested in Phase 2 on the queries are all released.
Once these locks are released, the involved object and
queries become accessible to other operations.

Take the object movement example in Section III, and
assume the object in the cell 53 is moving to the cell 32,
covered by the query D. This algorithm first locates the leaf
nodes that contain the cell 53 or will contain the cell 32, and
requests write-locks on these nodes. The OLM then requests
write-locks on cells 53 and 32. The entry for the cell 53 is
deleted from the leaf node, and a new entry for the cell 32 is

inserted, before the locks on these leaf nodes are released. In
Phase 2, the QLM requests read-locks on cells 53 and 32
before the query D is retrieved. The algorithm then requests
a query lock on D and releases the QLM locks. Finally, this
object is inserted into the entry D in the R-table, and the
query lock on D and the OLM locks on cells 53 and 32 are
released.

Algorithm 1. Object movement.

B. Query Movement
The proposed operation of query movement updates the

location of the given query in the Q-table, as well as the
results of this query in the R-table, so that the database and
query results are kept consistent. The query movement takes
the query ID, old query window, new query window, and
index structure as input parameters. This operation consists
of three phases, object window search, query location
update, and result refresh.

Algorithm 2 shows the details of the query movement
operation. Phase 1, object window query, applies the SFC
to locate the cells overlapped by the old query window and
new query window. The Blink-tree is then traversed to
retrieve all the objects covered by the new query window
after read-locks are requested on the overlapped OLM cells.
These read-locks are kept till the end of the process to avoid
phantom access on these objects.

Phase 2, query location update, exclusively locks the
QLM cells involved in the query movement, and
consequently updates the corresponding entries of the Q-

Algorithm Object_Movement
Input: Oid: Object ID, loc_old: Old Location of Object, loc_new: New Location
of Object, T: Index Tree of Objects, Q: Q-table, R: R-table
Output: Nil

//Phase 1. Object location update
//locate on Blink-tree
c_old = SFC_map(loc_old); //determine the cell contains loc_old
c_new = SFC_map(loc_new); //determine the cell contains loc_new
n_old = T.traverse(c_old); // locate the leaf which contains c_old
n_new = T.traverse(c_new); // locate the leaf which contains c_new
T.writeLock(n_new ∪ n_old); // request tree node locks at one time
//modify Blink-tree
OLM.writeLock(c_old ∪ c_new); //request OLM cell locks at one time
T.update(c_new, n_new, c_old, n_old); //update Blink-tree if necessary for

inserting loc_new and deleting loc_old
T.unWriteLock(n_new ∪ n_old); //release tree node locks
PageDeletet(n_old.entry(c_old), loc_old); //remove loc_old from the data page

that contains cell c_old
PageInsert(n_new.entry(c_new), loc_new); //insert loc_new to the data page that

contains cell c_new

//Phase 2. Query search
QLM.readLock(c_old ∪ c_new); //request QLM cell locks at one time
q_old = Q.queries(c_old);
q_old = q_old.cover(loc_old); //identify queries cover loc_old
q_new = Q.queries(c_new);
q_new = q_new.cover(loc_new); //identify queries cover loc_new
R.writeLock(q_old∪q_new - q_old∩q_new); //request query locks at one time
QLM.unReadLock(c_old ∪ c_new); //release QLM locks

//Phase 3. Result refresh
For each query q in q_old-q_new

R.entry(q.Qid) -= Oid; //remove Oid from results
For each query q in q_new-q_old

R.entry(q.Qid) += Oid; //insert Oid into results
R.unWriteLock(q_old∪q_new - q_old∩q_new);
OLM.unWriteLock(c_new ∪ c_old); //release OLM cell locks
Return;

136136

table by adding or removing the query ID. This update
assures concurrent object movements retrieve up-to-date
query windows. After the query window is updated in the
data page that stores this query, a write-lock is requested for
the corresponding entry in the R-table, so that the results of
this query are protected from being accessed. By the end of
Phase 2, the write-locks on QLM cells are removed, because
the query has been protected by the lock on the R-table
entry.

Algorithm 2. Query movement.

Phase 3, result refresh, replaces the results of the given
query in the R-table with the objects retrieved in Phase 1.
Thus the R-table can correctly reflect the current query
locations and object locations. After the results of this
continuous query are updated, the locks on this query
(requested in Phase 2) and the affected OLM cells (requested
in Phase 1) are released to allow access from other
concurrent operations.

For instance, the following steps execute the concurrent
query movement example in Section III, in which the query
E moving towards west by one cell to cover cells 38 and 39.
In Phase 1, the OLM places read-locks on cells 38 and 39
before the object in the cell 39 is retrieved via the Blink-tree.
The QLM then requests write-locks on cells 38, 39, 40, and
41. The Q-table entries for cells 40 and 41 remove the query
E, meanwhile the entries for cells 38 and 39 add E. By the
end of Phase 2, query write-lock is placed on E, and the
QLM locks are released. In Phase 3, the object in the cell 39
is inserted into the entry E in the R-table, before the query
lock on E and the OLM locks on cells 38 and 39 are
released.

C. Query Report
A query report takes a query ID and the R-table as input

parameters, and returns the objects that are currently covered
by this query. Due to the existence of the R-table, the query
report process is simply to retrieve an entry from a hash
table. Meanwhile, the query report will return the most

recent results, because all the object and query movements
refresh the affected query results in real time.

The concurrent query report operation is presented in
Algorithm 3. At first, a read-lock is requested for the entry of
the R-table based on the query ID. Then the content of this
entry, a list of objects, is retrieved. At the commit point, the
read-lock is released. In the proposed framework, the R-table
is the only index component involved in this operation. The
read-lock on the R-table has to cover the whole process to
protect the corresponding entry from being updated by other
concurrent operations.

Taking the objects and queries in Figure 2 as an example,
if query report for the query F is issued, the algorithm first
requests read-locks on the query F. The content of the entry
F in the R-table, the object in the cell 56, is then retrieved.
Finally, the lock on F is released before the commit point.

Algorithm 3. Query report.

V. CORRECTNESS

The proposed concurrent continuous query processing
guarantees serializable isolation, consistency, and deadlock-
free based on the well-designed protocol. Serializable
isolation means the results of any set of concurrent
operations are equal to that from the sequential execution of
the same set of operations; consistency refers to the feature
that the results always reflect the current commmited status;
deadlock-free means any combination of the concurrent
operations does not cause any deadlock. The correctness of
the proposed protocol, in terms of these three features, can
be validated by studying the lock durations for each
operation.

Figure 7 shows the order and duration of the locks
requested in each operation, including object movement,
query movement, and query report. Each bar in the figure
indicates a set of locks held on a particular sub-structure. The
horizontal span of each bar in the figure represents the time
period that the locks are granted on the corresponding
structure. The overlaps of vertical projections of the bars
indicate the intersections of the duration of the
corresponding locks. The label of each bar shows the
particular sub-structure to lock. Bars with label BL are the
locks on the Blink-tree nodes, while OL and QL indicate the
locks on OLM and QLM cells, respectively. Bars with label
RL are the locks placed on the R-table entries to secure the
visited queries. These locks on different sub-structures
cooperate with each other to achieve serializable isolation,
consistency, and deadlock-free.

Serializable isolation: The proposed object location
update holds write-lock (OL in Object Movement) on the
OLM cells to cover the old location and new location of the

Algorithm Query_Report
Input: Qid: Query ID, R: R-table
Output: S: Set of Objects

R.readLock(Qid); //request query lock
S = R.entry[Qid]; //retrieve query results
R.unReadLock(Qid); //release query lock
Return S;

Algorithm Query_Movement
Input: Qid: Query ID, win_old: Old Window of Query, win_new: New
Window of Query, T: Index Tree of Objects, Q: Q-table, R: R-table
Output: Nil

//Phase 1. Object window searche
c_old = SFC_map(win_old); //determine the cells overlapping with win_old
c_new = SFC_map(win_new); //determine the cells overlapping with win_new
OLM.readLock(c_new); //request OLM cell locks at one time
o_new = T.rangeSearch(win_new); // find the objects overlapping with win_new

//Phase 2. Query location update
QLM.writeLock(c_old ∪ c_new); //request QLM cell locks at one time
For each cell c in c_old – c_old∩c_new
 Q.entry(c) -= Qid; //remove Qid from Q-table
For each cell c in c_new – c_old∩c_new

Q.entry(c) += Qid; //remove Qid from Q-table
PageUpdate(Qid, win_new); //update query window
R.writeLock(Qid); //request query lock
QLM.unWriteLock(c_old ∪ c_new); //release QLM cell locks

//Phase 3. Result refresh
R.entry(Qid).objList = o_new; //update R-table entry
R.unReadLock(Qid); //release query lock
OLM.unWriteLock({c_new, c_old}); //release OLM cell locks
Return;

137137

object throughout the operation to occupy the cells related to
this object exclusively. This operation also locks the affected
queries (QL and RL in Object Movement) as soon as they are
known till its commit point. Therefore, in the object
movement, the object and corresponding queries are
protected until the operation is completely processed. On the
other hand, the query movement locks the overlapped OLM
cells (OL in Query Movement) once they are known and till
its commit point, and holds locks on the query window and
query results (QL and RL in Query Movement) before
updating the query and till the commit point. Thus the query,
query windows, and affected objects are secured from
conflicts. Finally, the query report operation holds locks on
query results (RL in Query Report) all the time to avoid
being accessed by other concurrent operations. From the
above analysis, all these operations lock the target items
before accessing them and till the end of process. This
locking strategy guarantees that no conflicting access on
common resources could occur among concurrent
operations. Therefore, the proposed operations are
serializable isolated.

Figure 7. Lock durations for operations.

Consistency: The design of the Blink-tree, including the
write-locks on tree nodes (BL in Object Movement) has been
proved [16] to assure the consistency within the index tree.
Besides the inner-tree protection, from the analysis for
serializable isolation, each proposed operation locks its
target items (object/query) throughout the process, which
ensures the intermediate status will not be accessed by other
operations. Because the query report locks the query results
(RL in Query Report) from its initiation to termination, and
the movement operations also locks the query results till
their commit points, only the results of all the operations
committed before the initiation of the query report will be
retrieved. This guarantees the continuous query results are
always correct with respect to the current database.

Deadlock-free: Deadlock-free is assured as long as the
common sources are not accessed in an opposite order. The
Blink-tree is deadlock-free internally [14], as long as the tree
node locks (BL in Object Movement) are requested based on
a global order. The locks in OLM, QLM, or R-table (OL, QL
or RL in Figure 7) are deadlock-free, because the locks on
any of these sub-structures in one operation are requested at
the same time. The combination of these locks on different
sub-structures will not cause any deadlock since they are

requested in the same order. OL are placed before QL, and
QL are before RL in this framework. Therefore, the proposed
concurrency control protocol is deadlock-free.

VI. EXPERIMENTS

To evaluate the performance of the proposed framework,
a set of extensive experiments on benchmark data sets have
been conducted by measuring the throughputs (number of
operations processed per second) of concurrent operations.
The design of experiments is illustrated in Figure 9. The
benchmark data sets were generated by a network-based
moving objects generator [17] using the road network of City
of Oldenburg, as shown in Figure 8. Three classes of moving
objects and moving queries were set to represent vehicles,
bicycles, and pedestrians. Half of the initial moving objects
generated were used as moving objects, and the rest of the
initial objects were expanded to range queries by specifying
a certain size. To map the locations of the objects and
queries to an one-dimensional space, the Hilbert curves with
different orders were applied in the framework. Based on
the moving object set and the Hilbert curve, a Blink-tree was
constructed. On the other hand, the object movements
simulated by the generator were translated into object
location updates and query updates. These location updates
and a set of random query report operations were sent to the
system as a multi-thread batch job. The overall processing
time for each set of operations was collected to calculate the
throughput.

Figure 8. Road network of Oldenburg and data.

In the experiments, six parameters were varied to simulate
different application scenarios and demonstrate their impacts
on the system performance. These parameters are listed as
follows.
• Order: the order of the Hilbert curve applied. It

determines the number of cells for the whole space.
• Data_size: the number of initial moving objects/moving

queries.
• Mobility: the total number of concurrent location updates

for objects and queries issued in a batch.
• OM_ratio: the percentage of object location updates in

Mobility.
• QR_ratio: the portion of query reports compared to

Mobility.
• Q_size: the side length of query window for each moving

query. It simulates query ranges in different applications.

BL Locks for Blink-tree nodes; OL Locks for OLM cells;
QL Locks for QLM cells; RL Locks for R-table entries
Object Movement: Query Movement: Query Report:

RL
QL
OL RLBL

RL
QL

OL

QR_Ratio

Continuous Query
Processing

Figure 9. Experiment design.

Object set

Query set

Blink-tree
Obj Movement

Que Movement

Order

Benchmark Data Sets Performance MeasureMovement Simulation Index Construction Concurrency Control

Data_Size Q_Size

Throughput

Mobility OM_Ratio

Q-table
R-table

Hilbert Curve

138138

The performance of the framework is evaluated by
varying these parameters. The default settings and ranges of
these parameters are listed in TABLE 2.

TABLE 2. EXPERIMENT PARAMETERS.
 Order Data_Size Mobility OM_ratio QR_ratio Q_size

Default 8 N/A 2K 50% 5% 5
Range 8~12 50K~150K 2K~10K 10%~90% 5%~25% 5~25

The proposed framework was implemented in Java using
JDK 1.5. The experiment system was built on a desktop with
a Pentium-D 2.8 GHz CPU. Three sets of initial moving
objects and moving queries were used in each set of
experiments, with data_size 150K, 100K, and 50K,
respectively. The average throughputs under different
parameter settings were calculated by collecting the average
processing time of ten batch executions. For comparison, the
continuous query processing extended from CLAM [6] with
serializable isolation (indicated as CI) was implemented. CI
treats the suboperations on each single index as an item in a
transaction. The CI operations under the proposed
framework acquire locks before accessing all the required
resources, except Blink-tree nodes, and release them at
commit point. CI inherits the query processing of the
proposed approach by fusing the link-based and lock-
coupling locking strategies. The only difference is that CI
does not optimize the lock duration for query locks and
QLM locks. This CI approach applies the link-based locking
on the Blink-tree, which has been shown to have fewer
read/write conflicts with less maintenance overhead than
lock-coupling protocols, therefore it can achieve higher
throughputs than a pure lock-coupling approach. Note that
the proposed approach was compared to a non-trivial method
to demonstrate its advantages. Since there is no existing
protocols to provide serializable isolation for continuous
query processing, to the best of our knowledge, CI is the
most matchable solution to compare with. The detailed
experiment results are presented in the following
subsections.

A. Throughput vs. Mobility
In this set of experiments, the impact of mobility was

studied by capturing the throughputs of continuous query
processing with different numbers of movements. Basically,
a higher mobility means more objects and queries that report
their movements at the same time. Consequently, as more
movements need to be processed, the processing queue
becomes longer and the queuing time for each movement
will be increased. This can be verified by the results
illustrated in Figure 10, where the X-axis indicates the
mobility value and the Y-axis represents the system
throughput. When the mobility increased from 2,000 to
10,000, the system throughputs on all the data sets decreased
by more than 60%.

Comparing the results from different data sets, the smaller
data set always performed better than the larger ones. The
throughput of the 50K data set was about three times better
than that of the 100K data set. Similarly, the performance of
the 150K data set was about 15% worse than the 100K data

set. The reason of these significant gaps is that a smaller data
set requires a smaller Blink-tree, less data pages for each Blink-
tree leaf entry, and smaller hash tables. Therefore, less I/O is
consumed for a movement in smaller data sets.

Figure 10. Throughput vs. mobility.

Another fact observed from this set of experiments is that
the proposed approach performed 10~20% better than the CI
method. This means the design of the proposed concurrency
control protocol reached a higher concurrency level by
optimizing the lock durations. This improvement can be
further enhanced by running on more processing units.

B. Throughput vs. OM_ratio
This set of experiments demonstrated the trend of

throughput when increasing OM_ratio. A higher OM_ratio
means more object movements within a given mobility. The
results are shown in Figure 11, where the X-axis represents
OM_ratio and the Y-axis indicates the throughput. As
observed from the figure, the performance of concurrent
continuous query processing dropped significantly when
OM_ratio increased from 10% to 90%.

When OM_ratio was set to 0.1, the system performed
surprisingly well on all the three data sets. These high
throughputs then decreased quadratically. This is because the
object movement requires updating the Blink-tree, while the
query movement only updates hash tables. Updates on a
Blink-tree are costly compared to updating a hash table,
because they not only require more I/O operations to locate
the data page, but also have to perform node split/merge
sometimes. Furthermore, one update operation on the Q-
table only locks that single query, but the Blink-tree needs to
lock nodes during updating, which involves multiple objects
and causes more conflicts. These results justify the design of
applying a hash table to index queries, and suggest that query
movement in the proposed framework is more efficient than
object movement.

Figure 11. Throughput vs. OM_ratio.

139139

The corresponding throughputs of CI approach showed a
similar trend, but always lower than the proposed framework
by 10~20%. The improvement was more significant when
OM_ratio was low, because the proposed concurrency
control protocol reduces the lock duration mainly for QLM
and the locks on queries. Therefore, the performance of
continuous monitoring with more query movements was
promoted as expected.

C. Throughput vs. Q_size
The relationship between throughput and Q_size was

studied in this set of experiments. Q_size was increased
gradually from 5 to 25 to probe its impact on the system
performance. The results are illustrated in Figure 12, where
the X-axis represents Q_size and the Y-axis shows the
throughput. In all the three data sets, although the smaller
data sets outperformed the larger ones, the throughputs kept
constant when Q_size increased. From this figure, obviously
Q_size did not show much impact on the performance. The
reason is that a query window with size 25*25 is still small
comparing to the data space. With this query window, a Blink-
tree search can most likely find the results within one data
page. In this case, a range search requires the same I/O cost
as a point search.

Figure 12. Throughput vs. Q_size.

Similarly, the throughputs of the data sets applying CI
approach were constant when Q_size varied. The CI
approach on each data set performed about 10~20% worse
than the proposed concurrency control protocol on the same
data set.

D. Throughput vs. QR_ratio
The focus of this set of experiments was to study the

impact of QR_ratio on concurrent continuous query
processing. QR_ratio was gradually increased from 5% to
25%, and the corresponding throughputs on three data sets
were collected and compared. The results are plotted in
Figure 13, where the X-axis indicates QR_ratio and
throughput is represented in the Y-axis.

As shown in the figure, the throughputs of three data sets
slightly decreased when QR_ratio raised significantly. When
QR_ratio increased from 5% to 25%, the throughputs only
reduced about 5%. These results suggest that the cost for a
query report operation is negligible to the system comparing
to object movement and query movement. These results can
be well explained via the design of this concurrent

continuous query framework. Query report, as illustrated in
Algorithm 3, only requests a read-lock on the given query,
and reads the corresponding entry in the R-table. It is a
memory-based operation and can hardly block other
operations.

Figure 13. Throughput vs. QR_ratio.

On the other hand, as expected, the performance of CI
approach was always 10%~20% worse than the proposed
approach, and decreased in the same speed as the proposed
concurrent operations on the corresponding data set.

E. Throughput vs. SFC Order
This set of experiments demonstrate the impact of the

order of SFC mapping on the performance of concurrent
continuous query processing. The Hilbert curves with order
8, 10, and 12 were used to construct Blink-trees on the 150K
moving object set. Obviously, a higher SFC order results in
finer cells in space, and consequently more cell IDs will be
indexed in Blink-tree. In other words, less objects will be
contained in a single cell.

a) Over OM_ratio.

b) Over Q_size.

Figure 14. Throughput vs. SFC order.

OM_ratio and Q_size were varied in the experiments to
investigate the impact of order in different scenarios. As
illustrated in Figure 14 a), when OM_ratio increased from
0.1 to 0.9, the throughput of the system on different data sets

140140

kept decreasing. In most of the cases, the Hilbert curve with
order 12 performed better than order 10, and the curve with
order 10 performed better than order 8. That is because: 1)
When SFC order is higher, the Blink-tree has more nodes, and
the locks on Blink-tree nodes have less chances to cause
conflict; 2) High concurrency can be achieved by having
more cells in OLM and QLM; 3) With a higher SFC order,
there are less data pages associated with a Blink-tree leaf
entry, leading to less I/O for moving object retrieval/update.
Interestingly, when OM_ratio was 10%, the Hilbert curve
with order 10 performed the best among the three orders. For
the order 12 Hilbert curve with a small OM_ratio, the
improvement from finer lock granules and more efficient
Blink-tree data accesses was compensated by the additional
cost of the Hilbert curve mapping function calculation.

Observing the performance of the corresponding CI
approach, the CI on the Hilbert curve with order 10 did not
reflect the advantage of finer lock granules as significant as
the proposed approach, because of its increased lock
durations caused by the Hilbert mapping calculation.

When Q_size was increased from 5 to 25 in Figure 14 b),
the Hilbert curve with order 12 performed better than order
10 in most cases, and the curve with order 10 outperfomed
order 8 all the time. Furthermore, the improvement from
order 8 to order 10 was greater than that from order 10 to
order 12. On the other hand, the Hilbert curves with order 8
and 10 performed constantly, behaving similarly as
discussed in Subsection C. However, the Hilbert curve with
order 12 exhibited a 20% performance drop in the figure
when Q_size increased. These results suggest that the cell
size in the Hilbert curve with order 12 is comparably small to
the query sizes. Therefore, a query may need to scan
multiple cells to locate the moving objects.

Concluded from the above experiment results, the
proposed concurrent continuous query processing optimizes
the locking strategy and improves the concurrency level. The
parameters, including order, mobility, data_size, and
OM_ratio are found having significant impacts on the
performance of the proposed framework. Within these
parameters, the increasing of mobility, data_size, or
OM_ratio degraded the system performance, whereas a
higher order promoted the throughput.

VII. CONCLUSION

This paper proposes a framework for concurrent
continuous query processing based on the B-tree and SFC.
Indices for moving objects, moving queries, and query
results have been integrated to efficiently handle movements
and query reports. The proposed concurrency control
protocol optimizes the locking strategy and provides
serializable isolation, data consistency, and deadlock-free. Its
correctness has been proved by analyzing the lock durations
of the operations, and the performance has been evaluated by
a set of extensive experiments. This work provides the
applicability of efficient continuous query processing in
multi-user systems, and offers expandability to other B-tree-

based moving object management approaches. Future efforts
could be devoted to applying this framework to motion-
based spatial-temporal databases, such as the Bx-tree and the
BBx-tree. Expanding this concurrency control protocol to R-
tree-based indexing structures would also be an interesting
direction.

REFERENCES
[1] Smart Trek, http://www.its.washington.edu/projects/strek.html,

Accessed in May, 2008
[2] Flight Tracker - Real Time Airline Flight Tracking Software,

http://www.airnavsystems.com/, Accessed in Jun., 2008
[3] M. F. Mokbel, X. Xiong, and W. G. Aref, "SINA: Scalable

Incremental Processing of Continuous Queries in Spatio-
Temporal Databases," in Proceedings of the 23rd ACM
SIGMOD International Conference on Management of Data,
Paris, France, 2004, pp. 321-330.

[4] H. Hu, J. Xu, and D. L. Lee, "A Generic Framework for
Monitoring Continuous Spatial Queries over Moving Objects," in
Proceedings of the 24th ACM SIGMOD International
Conference on Management of Data, Baltimore, MD, USA,
2005, pp. 479-490.

[5] B. Gedik, K.-L. Wu, P. S. Yu, and L. Liu, "Processing Moving
Queries over Moving Objects Using Motion-Adaptive Indexes,"
IEEE T Knowl Data En, vol. 18, pp. 651-668, May 2006.

[6] J. Dai and C.-T. Lu, "CLAM: Concurrent Location Management
for Moving Objects," in Proceedings of the 15th ACM
International Symposium on Advances in Geographic
Information Systems, Seattle, WA, USA, 2007, pp. 292-299.

[7] D. Lin, C. S. Jensen, B. C. Ooi, and S. Šaltenis, "Efficient
Indexing of the Historical, Present, and Future Positions of
Moving Objects," in Proceedings of the 6th International
Conference on Mobile Data Management, Ayia Napa, Cyprus,
2005, pp. 59-66.

[8] D. Lomet, R. Barga, M. F. Mokbel, G. Shegalov, R. Wang, and
Y. Zhu, "Transaction Time Support inside a Database Engine,"
in Proceedings of the 22nd IEEE International Conference of
Data Engineering, Atlanta, GA, USA, 2006, pp. 35 -46.

[9] H. Sagan, Space Filling Curves. Berlin, Germany: Springer,
1994.

[10] C. S. Jensen, D. Tielsytye, and N. Tradilauskas, "Robust B+-
Tree-Based Indexing of Moving Objects," in Proceedings of the
7th International Conference on Mobile Data Management,
Nara, Japan, 2006, pp. 12-20.

[11] C. S. Jensen, D. Lin, and B. C. Ooi, "Query and Update Efficient
B+-Tree Based Indexing of Moving Objects," in Proceedings of
the 30th International Conference on Very Large Data Bases,
Toronto, Canada, 2004, pp. 768-779.

[12] M. L. Yiu, Y. Tao, and N. Mamoulis, "The Bdual-Tree: Indexing
Moving Objects by Space Filling Curves in the Dual Space,"
VLDB J, vol. 17, pp. 379-400, May 2008.

[13] V. W. Setzer and A. Zisman, "New Concurrency Control
Algorithms for Accessing and Compacting B-trees," in
Proceedings of the 20th International Conference on Very Large
Data Bases, Santiago de Chile, Chile, 1994, pp. 238-248.

[14] W. d. Jonge and A. Schiff, "Concurrent Access to B-trees," in
Proceedings of the 1st PARBASE International Conference on
Databases, Parallel Architectures and Their Applications, Miami
Beach, FL, USA, 1990, pp. 312-320.

[15] P. Lehman and S. Yao, "Efficient Locking for Concurrent
Operations on B-trees," ACM T. Database Syst., vol. 6, pp. 650-
670, Dec. 1981.

[16] I. Jaluta, S. Sippu, and E. Soisalon-Soininen, "Concurrency
Control and Recovery for Balanced B-link Trees," VLDB J, vol.
14, pp. 257-277, Apr. 2005.

[17] T. Brinkhoff, "A Framework for Generating Network- Based
Moving Objects," Geoinformatica, vol. 6, pp. 153-180, Jun.
2002.

141141

