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A Concurrency Control Protocol for Continuously Monitoring Moving Objects 

Abstract—The increasing usage of location-aware devices, such 
as GPS and RFID, has made moving object management an 
important task. Especially, being demanded in real-world 
applications, continuous query processing on moving objects 
has attracted significant research efforts. However, little 
attention has been given to the design of concurrent continuous 
query processing for multi-user environments. In this paper, we 
propose a concurrency control protocol to efficiently process 
continuous queries over moving objects on a B-tree-based 
framework. The proposed protocol integrates link-based and 
lock-coupling strategies, and is proven to assure serializable 
isolation, data consistency, and deadlock-free for continuous 
query processing. Concurrent operations including continuous 
query, object movement, and query movement are protected 
under this protocol. Experimental results on benchmark data 
sets demonstrated the scalability and efficiency of the proposed 
concurrent framework. 

I. INTRODUCTION 

Moving object management has attracted significant 
research efforts due to the wide usage of location-aware 
devices. The movement of vehicles, planes, and people can be 
traced, stored, and queried in moving object management 
systems. For example, vehicle tracking systems [1] track and 
display moving vehicles in real-time; flight monitoring 
systems [2] trace thousands of flying airplanes. Systems like 
these require spatial-temporal techniques to handle 
continuous moving objects. Among the tasks of moving 
object management, continuous queries keep refreshing the 
objects within the monitoring ranges of mobile queries. 
Examples of continuous query include “tracking all the patrol 
vehicles within 2 miles of the Inauguration Parade,” and 
“reporting all the ships within 10 miles of this Coast Guard 
helicopter.” Several continuous query processing techniques 
have recently been proposed [3-5]. 

The correctness of continuous queries on moving objects 
has to be assured by a well-designed concurrency control 
protocol. Figure 1 gives an example of inconsistent query 
results. In this example, a police vehicle Q keeps tracking all 
the buses within a given range of 0.5 mile. t1 and t2 are two 
consecutive query report timestamps. A and B are two buses 1 
mile away from each other, driving in the same direction 
towards the police vehicle. We assume that all location 
updates are submitted on time, and the query results are 
retrieved every time after the location updates at that 
timestamp are submitted. Without a concurrency control 
protocol in place, these location updates and query reports in 
the database may exhibit inconsistent status. Some possible 
query result sets of Q at t2 could be Ø, {A}, {B}, or {A,B}, 
within which only {A} is correct with respect to their actual 

locations at t2. The situation that returns an empty result set at 
t2 happens when Q is evaluated right after A deletes its old 
location, and the results of Q are reported before any other 
result updates related to Q. It is called pseudo disappearance 
[6], because the bus A seems disappeared in Q during its 
movement. B will be returned at time t2 when B has updated 
its new location in the result set of Q, but Q’s current results 
are reported before Q updates its new range. This scenario is 
called back order, where the query seems staying at its 
previous position while some objects have already updated 
their locations. Back order may also result in an output {A,B} 
at t2, where only B is back ordered and A is in normal status. 
In contrast to back order, another scenario is named pre-
order, in which the queries are updated while some location 
updates for objects are delayed. In this example, pre-order on 
A will output {A} as the result of Q at t2, because in this 
situation, Q evaluates and outputs its results before the new 
location of A is updated in database, and both <A,t1> and 
<A,t2> intersect with <Q,t2>. Further detailed discussion is 
provided in Section III. All the above inconsistent scenarios 
can be prevented by a well designed concurrency control 
protocol.  

 
Figure 1. Inconsistency of continuous query w/o concurrency control. 

Because of their efficient update and mature 
implementations, spatial access methods based on the B-tree 
are suitable for moving object management [7]. However, the 
continuous queries on moving objects bring two challenges to 
the concurrency control on B-tree-based databases: 1). 
Continuous monitoring: The data in query windows should be 
persistently secured to provide serializable isolation for 
concurrent operations; 2). Frequent updates: Locations of the 
objects in the database, as well as the query ranges, need to be 
updated frequently, which could cause read-write conflicts on 
the index and data pages. In order to efficiently process 

<Q, t1> <Q, t2> 

<B, t1> <B, t2> 

Correct result for Q at t2: A 
Possible results if without concurrency control:  

Pseudo disappearance: on A or A&B  Ø, on B  {A}; 
Back order: on A  Ø, on B  {A,B}, on A&B  {B}; 
Pre-order: on A or B or A&B {A}. 

<A, t1> <A, t2> 
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location updates and continuous queries, multiple indices can 
be applied to index objects, queries, and results accordingly 
[3]. The existing B-tree-based concurrency control techniques 
are not capable of providing serializable isolation on 
operations involving multiple indices. In addition, the popular 
versioning approaches for transaction management [8] are not 
feasible for frequent updates in moving object management. 

This paper proposes a concurrency control protocol for 
concurrent spatial operations on moving objects based on the 
B-tree and Space-Filling Curves (SFC) [9]. It supports 
concurrent continuous query processing involving multiple 
indices, and avoids pseudo disappearance, back order, and 
pre-order. The major contributions of this work are as 
follows: 
• Propose a concurrent continuous query processing 

approach for a B-tree-based framework; 
• Fuse lock-coupling and link-based approaches to protect 

concurrent object updates, query updates, and continuous 
queries; 

• Prove that serializable isolation, data consistency, and 
deadlock-free are guaranteed in the proposed framework; 

• Validate the scalability and efficiency of the proposed 
concurrency control protocol by a set of extensive 
experiments on benchmark data sets. 
The rest of this paper is organized as follows. Section II 

surveys the existing work on moving object management and 
concurrency control protocols. The preliminary of the 
proposed concurrent continuous query processing is discussed 
in Section III. Section 0 proposes the concurrent continuous 
query processing algorithms. The correctness proof is 
presented in Section V, and the experiment results are 
illustrated in Section VI. Finally, this work is concluded in 
Section VII. 

II. RELATED WORK 

This section reviews existing techniques for B-tree-based 
moving object access methods, continuous query processing 
techniques, and concurrency control protocols for B-trees. 

Benefitting from inexpensive update compared to R-trees, 
several spatial-temporal indexing structures [7, 10-12] based 
on B-trees have been proposed to manage moving objects 
and process spatial-temporal queries. Among these 
approaches, the Bx-tree [11] uses timestamps to partition the 
B+-tree, and each partition indexes the locations of the 
objects within a certain period. Because each moving object 
is modeled as a linear function of location and velocity, the 
Bx-tree can not only handle the queries on current locations, 
but also answer the spatial queries for the near future.  The 
BBx-tree [7] extends the indexing ability of the Bx-tree by 
supporting spatial queries on past locations. It applies a 
forest of trees; each tree corresponds to a certain time period. 
Queries with time and space constraints can be answered by 
the BBx-tree. The Bdual-tree [12] improves the query 
performance of the Bx-tree on moving objects by indexing 
both the locations and velocities. Dual space transformation 
is applied in the Bdual-tree for efficient query access.  

A straightforward approach to answer continuous queries 
is to process these queries as range queries periodically. 
However, this approach is not feasible when the number of 
continuous queries is large. Several approaches based on R-
trees or hash tables have been proposed to answer the 
continuous moving range queries over moving objects by 
indexing both objects and queries. SINA [3] manages objects 
and queries by using hashing techniques, and incrementally 
processes positive and negative updates. Another approach, 
MAI [5], constructs motion-sensitive indices for objects and 
queries by modeling their movements, so that prediction 
queries for the near future can be supported. A generic 
framework for continuous queries on moving objects [4] has 
been proposed to optimize the communication and query 
reevaluation costs due to frequent location updates. 

Concurrency control protocols [13-16] have been 
designed to ensure the consistency of B-trees under 
simultaneous non-spatial operations. These protocols can be 
categorized into link-based and lock-coupling approaches. 
The link-based protocols, represented by the Blink-tree [14, 
15], apply only exclusive locks in update operations, and 
guarantee the consistency of concurrent operations based on 
the global order of data. In these approaches, each tree 
access follows the links from root to leaf and from left to 
right to identify a search path for the queried key. The lock-
coupling approaches [13, 16] apply different lock types for 
read and write operations to provide flexible concurrency 
control. The lock-coupling approaches are able to provide 
serializable isolation to concurrent operations, albeit require 
comprehensive lock management on different levels of the 
index tree. In critical scenarios such as security systems and 
military applications, serializable isolation is required to 
ensure accurate relative positions among the query and 
objects. Although transaction management techniques can 
achieve serializable isolation, unlike concurrency control 
protocols for spatial indices, they tend to release the index 
nodes until commit point rather than as early as possible. 
Serializable isolation of the moving object management has 
recently been considered in CLAM [6], which provides 
concurrency control for location updates and queries on a B-
tree-based spatial access framework. However, CLAM is not 
sufficient to support continuous queries, because it only 
works on a single indexing tree and for one-time queries.  

The concurrent continuous query processing framework 
proposed in this paper applies the Blink-tree and hash 
techniques to construct indices for moving objects, moving 
queries, and query results, integrating multiple locking 
mechanisms for efficient concurrent access on objects and 
queries.   

III. PRELIMINARY 

Before presenting the concurrent continuous query 
processing, we introduce the overall design of the proposed 
framework. In this framework, serializable isolation is 
supported on the concurrent spatial operations for continuous 
query processing. In other words, the results of these 
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concurrent operations are the same as the results of 
sequentially processing these operations ordered by their 
commit point. The access framework designed for scalable 
continuous query processing captures the current locations of 
the objects and queries.  

To specifically describe the problem, several assumptions 
for the system environment are made as follows: 
• Point object: Each moving object is represented as a 

spatial point; each object periodically reports its current 
location to the database.  

• Window query: Each moving query is represented as a 
spatial box, which is the query window; each query 
periodically reports its new query window to the database.  

• Lock manager: There exists a lock manager to support 
different lock types and maintain all the locks.  
These assumptions are applicable in many real-world 

applications. Based on the above assumptions, a concurrent 
access framework for continuous queries is designed in the 
following sections. In this framework, the supported 
concurrent spatial operations are object movement, query 
movement, and query evaluation. Object movement takes 
object ID, old location, and new location as inputs, and 
updates the object index and the affected query results. 
Query movement takes query ID, old query window, and 
new query window as inputs, and updates the query index 
and results. Query report takes query ID as input, and 
outputs the set of objects covered by the query window. The 
output of a query report operation should reflect the current 
committed status. An overview of the proposed indexing 
structure and its concurrency control protocol is presented in 
the rest of this section. 

A. Indexing Structure 
To process the continuous query with efficiency and 

scalability, an indexing structure with one Blink-tree and two 
hash tables (Q-table and R-table) is applied to index current 
locations of both objects and queries. In this framework, the 
Hilbert Space-Filling curve [9], which preserves the spatial 
proximity of objects, divides the space into non-overlapped 
cells, and maps each object into a particular cell and each 
query window into a set of corresponding cells. Thus the 
spatial locations of objects/queries can be represented by 
one-dimensional cell IDs. The cell IDs of moving objects 
can then be indexed by a Blink-tree. Each entry in the leaf 
nodes of the Blink-tree points to the data page that stores the 
objects in its corresponding cell. 

On the other hand, the cell IDs of moving queries are 
indexed using a hash table, Q-table, where the cell IDs are 
hash keys and the pointers to the corresponding queries are 
the contents stored in each bucket. The primary reason for 
using a hash table to index the queries, rather than another 
Blink-tree, is that point query is the only search on the query 
index in the proposed algorithms. In addition to these 
indices, another hash table, R-table, is used to store the query 
results in memory. In R-table, the query IDs are used as hash 

keys, and each entry stores a list of objects covered by a 
particular query. 

 
Figure 2. An example of objects and queries.  

 
Figure 3. Blink-tree index for objects in Figure 2.  

A snapshot example of moving objects and continuous 
queries is illustrated in Figure 2, where a 2D Hilbert curve 
with order of 3 is applied. There are six queries indicated by 
letters (A, B, … F), and fourteen objects denoted by their cell 
IDs. Figure 3 demonstrates a Blink-tree constructed based on 
the objects in Figure 2. Each non-empty cell is indexed by a 
leaf node entry in the Blink-tree. The moving objects in one 
cell are stored in the same data page, or consecutive pages if 
overflowed. Different from the standard B-tree, in the Blink-
tree, the tree nodes on the same level are linked from left to 
right for concurrency control purpose. The Q-table for query 
index corresponding to Figure 2 is shown in Figure 4. In the 
Q-table, each cell covered by any query has an entry. These 
entries consist of the corresponding queries, and can be 
randomly accessed by a given cell ID. Figure 5 shows the R-
table for given objects and queries. Each entry of the R-table 
is associated with a query, and tracks the objects covered by 
that corresponding query based on the current database 
status. The objects in the example are denoted in the form of 
O_cellID. 

Cell: 4 5 6 7 8 9 11 28 29 32 40 41 56 61 
Query: A A A A A 

B 
A B C C D E E F F 

Figure 4. Q-table for queries in Figure 2.  
Query: A B C D E F 
Object: O_5; O-6 O_8 O-28   O_56 
Figure 5. R-table for objects and queries in Figure 2. 

In this indexing framework, an object movement will 
update its location in the Blink-tree, then search the Q-table 
for affected queries, and finally refresh the corresponding 
query results in the R-table. For example, if the object in the 
cell 53 is moving to the cell 32, which is covered by the 
query D, it first updates its location in the Blink-tree by 
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removing leaf entry 53 and adding new entry 32. Then the 
Q-table is searched and D is found to cover the object. At 
last, a record O_32 is inserted into the R-table under the key 
D. A query movement needs to search the Blink-tree for the 
objects covered by its new query range, update the range in 
the Q-table, and refresh its query results in the R-table. For 
instance, query E is moving towards west by one cell to 
cover cells 38 and 39. The system searches the Blink-tree 
using cells 38 and 39, and identifies the object in cell 39. 
Then the Q-table is updated by removing entries 40 and 41, 
and creating two new entries 38 and 39 with E inside. The R-
table is refreshed by inserting O_39 to the entry E. A query 
report simply visits the entry in the R-table and outputs its 
object list. 

B. Concurrency Control Protocol 
Continuous query processing requires an appropriate 

concurrency control protocol to ensure correct results while 
objects and queries are moving. Taking the scenario in 
Figure 1 as an example, inconsistent results are caused by 
incorrect processing sequences. Suppose each movement can 
be decomposed into three atomic components: D for the 
deletion of an old location, I for the insertion of a new 
location, and R for refreshing the corresponding query 
results. In addition, let qr denote the query report for Q at t2. 
A processing sequence contains … A.D Q.R A.I qr 

A.R … will output null as the results of Q at time t2 
(pseudo disappearance on A), because A disappears in 
database when Q updates its results, and there is no more 
update occurs before the query report at t2. Another 
inconsistent result set {B} of Q at t2 will be returned if the 
processing sequence contains … B.R Q.D qr Q.I  
… (back order on A and B). In this case, the bus B updates 
its location and adds itself to the result set of Q before Q’s 
location is updated, and the query report is processed before 
Q re-evaluates its results. If a processing sequence contains 
…B.R Q.I A.R qr Q.R …, both A and B will be output 
as the results of Q at time t2 (back order on B). That is 
because B adds itself into Q’s results based on Q’s old range, 
and A keeps itself in Q’s results based on Q’s new location. 
All these inconsistent processing sequences have to be 
prevented by the concurrency control protocol. 

The concurrency control protocol for the proposed 
structure should support the concurrent spatial operations 
involving the Blink-tree, Q-table, and R-table. For efficiency 
and effectiveness, a concurrency control protocol combining 
link-based and lock-coupling strategies is adopted. The link-
based strategy handles the operations on the Blink-tree, 
whereas the lock-coupling strategy ensures the consistency 
of the hash tables and between the index tree and hash tables. 
The lock-coupling strategy applies read-locks and write-
locks on cells and queries, so that updates and searches can 
be isolated from each other. The proposed concurrency 
control protocol protects simultaneous operations from 
pseudo disappearance, back order, and pre-order without 
causing any deadlocks.  

In order to provide serializable isolation on location 
updates and continuous queries, not only the objects, queries, 
and results, but also the empty SFC cells should be 
appropriately protected. Therefore, the locks on the Blink-tree 
nodes and continuous queries are not sufficient. Auxiliary 
structures need be employed to maintain the locks on cells.  

To globally manage the locks in all the operations, as 
listed in TABLE 1, the lock manager maintains locks on 
three structures, tree nodes, queries, and cells. Locks on tree 
nodes, which assure the consistency of the tree via link-
based strategy, are all write-locks for the Blink-tree update. 
Locks on queries (entries in R-table), which prevent 
inconsistency between queries and query results, contain 
read-locks and write-locks corresponding to each continuous 
query. Locks on the cells consist of object cell locks and 
query cell locks, which share the same SFC mapping but are 
independent to each other. The reason of employing these 
two sets of lock granules is to allow more concurrent 
accesses for better throughput. Read-locks and write-locks 
on cells for objects and queries are handled via two lock 
maps to prevent phantom access. The locks on the cells for 
objects are maintained by the Object Lock Map (OLM); the 
Query Lock Map (QLM) manages the locks on the cells for 
queries. Both lock maps are constructed with the same 
structure and size, as illustrated in Figure 6. In each lock 
map, each cell is associated with an integer to indicate the 
number of current read-locks granted for this cell. If a cell is 
being write-locked, -1 will be assigned to that cell in the lock 
map. In addition, a queue is also used by each cell to store 
pending cell locks, so that these processes can be notified 
once the cell is available. 

 
Figure 6. Example of lock map. 

TABLE 1. TYPES OF LOCKS MAINTAINED. 
 Tree Nodes Queries Cells 

Objects Queries 
R-lock  √ √ √
W-lock √ √ √ √

Protection Inconsistent tree Invalid results Phantom access Phantom access 
In all these locks, read-locks are compatible with each 

other, while write-locks are exclusive to all the others. The 
tree nodes are protected by the link-based locking strategy, 
whereas the queries and cells are secured by the lock-
coupling strategy. The spatial operations for continuous 
monitoring on moving objects integrated with these locks are 
introduced in detail in the next section. 

IV. CONCURRENT CONTINUOUS QUERY 

The proposed concurrent access framework supports 
object movement, query movement, and query report for 
scalable continuous query processing for moving objects. 

0 0 20-1 2 0 0
0 2 412 2 3 0
2 1 20 1 0 0 2 
1 2 -12-1 3 2 0
0 1 600 4 2 1
0 2 22 5 3 2 -1
0 0 0-11 1 0 0
0 0 00 0 2 3 1 

(Update) pid:21 

(Query) pid:18; (Query) pid:20; 
(Update) pid:31 
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A. Object Movement 
The operation of object movement takes the object ID, 

old location, and new location of the moving object, as well 
as the Blink-tree, Q-table and R-table, as input parameters. 
This operation updates the object location on Blink-tree, 
identifies the queries that cover either the old location or new 
location from the Q-table, and refreshes the results of these 
queries in the R-table. Corresponding to the above subtasks, 
the object movement algorithm contains 3 phases, namely, 
object location update, query search, and result refresh.  

The details of the algorithm are shown in Algorithm 1. 
Phase 1, object location update, first applies the SFC to 
find the cells that cover the old location or the new location 
of the object. After the cell IDs are determined, the algorithm 
traverses the Blink-tree to locate the leaf nodes that contain 
these cell IDs. Before modifying these leaf nodes, write-
locks are requested for these leaf nodes to assure consistency 
on the tree and for the OLM cells involved in the movement 
to avoid phantom access. The tree update function 
determines whether the movement occurs within one cell, 
moves to an empty cell, or empties the original cell. Based 
on these situations, an optimized location update is then 
performed by releasing unnecessary locks on tree nodes as 
early as possible. The remaining write-locks on tree nodes 
are released by the end of this phase, while the locks on 
OLM cells are kept till the end of this process.  

Phase 2, query search, retrieves the queries that cover 
the new location or old location of the object by looking up 
the Q-table. At the beginning of query search, read-locks are 
requested on the QLM cells involved in the movement. Thus 
the system can avoid phantom access on the query index. 
Then the Q-table is accessed to retrieve the candidate queries 
linked to these cell IDs. After refining the list of affected 
queries by computing their topological relation with the 
exact old location and new location, the queries that need to 
be updated are granted write-locks, and the read-locks on 
QLM cells can then be released. By the end of phase 2, the 
related continuous query results have been protected from 
being accessed by other simultaneous operations.  

Phase 3, result refresh, modifies the entries in the R-
table to refresh the query results. In this phase, the object ID 
is removed from the entries corresponding to the queries that 
the object is moving from, and is added into the entries for 
the queries that the object is moving to. After all the 
necessary updates are completed in the R-table, the write-
locks requested in Phase 1 on the OLM cells and the write-
locks requested in Phase 2 on the queries are all released. 
Once these locks are released, the involved object and 
queries become accessible to other operations. 

Take the object movement example in Section III, and 
assume the object in the cell 53 is moving to the cell 32, 
covered by the query D. This algorithm first locates the leaf 
nodes that contain the cell 53 or will contain the cell 32, and 
requests write-locks on these nodes. The OLM then requests 
write-locks on cells 53 and 32. The entry for the cell 53 is 
deleted from the leaf node, and a new entry for the cell 32 is 

inserted, before the locks on these leaf nodes are released. In 
Phase 2, the QLM requests read-locks on cells 53 and 32 
before the query D is retrieved. The algorithm then requests 
a query lock on D and releases the QLM locks. Finally, this 
object is inserted into the entry D in the R-table, and the 
query lock on D and the OLM locks on cells 53 and 32 are 
released.  

 
Algorithm 1. Object movement. 

B. Query Movement 
The proposed operation of query movement updates the 

location of the given query in the Q-table, as well as the 
results of this query in the R-table, so that the database and 
query results are kept consistent. The query movement takes 
the query ID, old query window, new query window, and 
index structure as input parameters. This operation consists 
of three phases, object window search, query location 
update, and result refresh.  

Algorithm 2 shows the details of the query movement 
operation. Phase 1, object window query, applies the SFC 
to locate the cells overlapped by the old query window and 
new query window. The Blink-tree is then traversed to 
retrieve all the objects covered by the new query window 
after read-locks are requested on the overlapped OLM cells. 
These read-locks are kept till the end of the process to avoid 
phantom access on these objects.  

Phase 2, query location update, exclusively locks the 
QLM cells involved in the query movement, and 
consequently updates the corresponding entries of the Q-

Algorithm Object_Movement 
Input: Oid: Object ID, loc_old: Old Location of Object, loc_new: New Location 
of Object, T: Index Tree of Objects, Q: Q-table, R: R-table 
Output: Nil 
 

//Phase 1. Object location update 
//locate on Blink-tree 
c_old = SFC_map(loc_old); //determine the cell contains loc_old 
c_new = SFC_map(loc_new); //determine the cell contains loc_new 
n_old = T.traverse(c_old); // locate the leaf which contains c_old 
n_new = T.traverse(c_new); // locate the leaf which contains c_new 
T.writeLock(n_new ∪ n_old); // request tree node locks at one time 
//modify Blink-tree 
OLM.writeLock(c_old ∪ c_new); //request OLM cell locks at one time 
T.update(c_new, n_new, c_old, n_old); //update Blink-tree if necessary for 

inserting loc_new and deleting loc_old 
T.unWriteLock(n_new ∪ n_old); //release tree node locks 
PageDeletet(n_old.entry(c_old), loc_old); //remove loc_old from the data page 

that contains cell c_old 
PageInsert(n_new.entry(c_new), loc_new); //insert loc_new to the data page that 

contains cell c_new 
 

//Phase 2. Query search 
QLM.readLock(c_old ∪ c_new); //request QLM cell locks at one time 
q_old = Q.queries(c_old); 
q_old = q_old.cover(loc_old); //identify queries cover loc_old 
q_new = Q.queries(c_new); 
q_new = q_new.cover(loc_new); //identify queries cover loc_new 
R.writeLock(q_old∪q_new - q_old∩q_new); //request query locks at one time 
QLM.unReadLock(c_old ∪ c_new); //release QLM locks 
 

//Phase 3. Result refresh 
For each query q in q_old-q_new 

R.entry(q.Qid) -= Oid; //remove Oid from results 
For each query q in q_new-q_old 

R.entry(q.Qid) += Oid; //insert Oid into results 
R.unWriteLock(q_old∪q_new - q_old∩q_new); 
OLM.unWriteLock(c_new ∪ c_old); //release OLM cell locks 
Return;
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table by adding or removing the query ID. This update 
assures concurrent object movements retrieve up-to-date 
query windows. After the query window is updated in the 
data page that stores this query, a write-lock is requested for 
the corresponding entry in the R-table, so that the results of 
this query are protected from being accessed. By the end of 
Phase 2, the write-locks on QLM cells are removed, because 
the query has been protected by the lock on the R-table 
entry.  

 
Algorithm 2. Query movement. 

Phase 3, result refresh, replaces the results of the given 
query in the R-table with the objects retrieved in Phase 1. 
Thus the R-table can correctly reflect the current query 
locations and object locations. After the results of this 
continuous query are updated, the locks on this query 
(requested in Phase 2) and the affected OLM cells (requested 
in Phase 1) are released to allow access from other 
concurrent operations. 

For instance, the following steps execute the concurrent 
query movement example in Section III, in which the query 
E moving towards west by one cell to cover cells 38 and 39. 
In Phase 1, the OLM places read-locks on cells 38 and 39 
before the object in the cell 39 is retrieved via the Blink-tree. 
The QLM then requests write-locks on cells 38, 39, 40, and 
41. The Q-table entries for cells 40 and 41 remove the query 
E, meanwhile the entries for cells 38 and 39 add E. By the 
end of Phase 2, query write-lock is placed on E, and the 
QLM locks are released. In Phase 3, the object in the cell 39 
is inserted into the entry E in the R-table, before the query 
lock on E and the OLM locks on cells 38 and 39 are 
released.  

C. Query Report 
A query report takes a query ID and the R-table as input 

parameters, and returns the objects that are currently covered 
by this query. Due to the existence of the R-table, the query 
report process is simply to retrieve an entry from a hash 
table. Meanwhile, the query report will return the most 

recent results, because all the object and query movements 
refresh the affected query results in real time.  

The concurrent query report operation is presented in 
Algorithm 3. At first, a read-lock is requested for the entry of 
the R-table based on the query ID. Then the content of this 
entry, a list of objects, is retrieved. At the commit point, the 
read-lock is released. In the proposed framework, the R-table 
is the only index component involved in this operation. The 
read-lock on the R-table has to cover the whole process to 
protect the corresponding entry from being updated by other 
concurrent operations.  

Taking the objects and queries in Figure 2 as an example, 
if query report for the query F is issued, the algorithm first 
requests read-locks on the query F. The content of the entry 
F in the R-table, the object in the cell 56, is then retrieved. 
Finally, the lock on F is released before the commit point. 

 
Algorithm 3. Query report. 

V. CORRECTNESS 

The proposed concurrent continuous query processing 
guarantees serializable isolation, consistency, and deadlock-
free based on the well-designed protocol. Serializable 
isolation means the results of any set of concurrent 
operations are equal to that from the sequential execution of 
the same set of operations; consistency refers to the feature 
that the results always reflect the current commmited status; 
deadlock-free means any combination of the concurrent 
operations does not cause any deadlock. The correctness of 
the proposed protocol, in terms of these three features, can 
be validated by studying the lock durations for each 
operation. 

Figure 7 shows the order and duration of the locks 
requested in each operation, including object movement, 
query movement, and query report. Each bar in the figure 
indicates a set of locks held on a particular sub-structure. The 
horizontal span of each bar in the figure represents the time 
period that the locks are granted on the corresponding 
structure. The overlaps of vertical projections of the bars 
indicate the intersections of the duration of the 
corresponding locks. The label of each bar shows the 
particular sub-structure to lock. Bars with label BL are the 
locks on the Blink-tree nodes, while OL and QL indicate the 
locks on OLM and QLM cells, respectively. Bars with label 
RL are the locks placed on the R-table entries to secure the 
visited queries. These locks on different sub-structures 
cooperate with each other to achieve serializable isolation, 
consistency, and deadlock-free. 

Serializable isolation: The proposed object location 
update holds write-lock (OL in Object Movement) on the 
OLM cells to cover the old location and new location of the 

Algorithm Query_Report 
Input: Qid: Query ID, R: R-table 
Output: S: Set of Objects 
 

R.readLock(Qid); //request query lock 
S = R.entry[Qid]; //retrieve query results 
R.unReadLock(Qid); //release query lock 
Return S;

Algorithm Query_Movement 
Input: Qid: Query ID, win_old: Old Window of Query, win_new: New 
Window of Query, T: Index Tree of Objects, Q: Q-table, R: R-table 
Output: Nil 
 

//Phase 1. Object window searche 
c_old = SFC_map(win_old); //determine the cells overlapping with win_old 
c_new = SFC_map(win_new); //determine the cells overlapping with win_new 
OLM.readLock(c_new); //request OLM cell locks at one time 
o_new = T.rangeSearch(win_new); // find the objects overlapping with win_new 
 

//Phase 2. Query location update 
QLM.writeLock(c_old ∪ c_new); //request QLM cell locks at one time 
For each cell c in c_old – c_old∩c_new 
 Q.entry(c) -= Qid; //remove Qid from Q-table 
For each cell c in c_new – c_old∩c_new 

Q.entry(c) += Qid; //remove Qid from Q-table 
PageUpdate(Qid, win_new); //update query window 
R.writeLock(Qid); //request query lock 
QLM.unWriteLock(c_old ∪ c_new); //release QLM cell locks 
 

//Phase 3. Result refresh 
R.entry(Qid).objList = o_new; //update R-table entry 
R.unReadLock(Qid); //release query lock 
OLM.unWriteLock({c_new, c_old}); //release OLM cell locks 
Return; 
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object throughout the operation to occupy the cells related to 
this object exclusively. This operation also locks the affected 
queries (QL and RL in Object Movement) as soon as they are 
known till its commit point. Therefore, in the object 
movement, the object and corresponding queries are 
protected until the operation is completely processed. On the 
other hand, the query movement locks the overlapped OLM 
cells (OL in Query Movement) once they are known and till 
its commit point, and holds locks on the query window and 
query results (QL and RL in Query Movement) before 
updating the query and till the commit point. Thus the query, 
query windows, and affected objects are secured from 
conflicts. Finally, the query report operation holds locks on 
query results (RL in Query Report) all the time to avoid 
being accessed by other concurrent operations. From the 
above analysis, all these operations lock the target items 
before accessing them and till the end of process. This 
locking strategy guarantees that no conflicting access on 
common resources could occur among concurrent 
operations. Therefore, the proposed operations are 
serializable isolated.  

 
Figure 7. Lock durations for operations. 

Consistency: The design of the Blink-tree, including the 
write-locks on tree nodes (BL in Object Movement) has been 
proved [16] to assure the consistency within the index tree. 
Besides the inner-tree protection, from the analysis for 
serializable isolation, each proposed operation locks its 
target items (object/query) throughout the process, which 
ensures the intermediate status will not be accessed by other 
operations. Because the query report locks the query results 
(RL in Query Report) from its initiation to termination, and 
the movement operations also locks the query results till 
their commit points, only the results of all the operations 
committed before the initiation of the query report will be 
retrieved. This guarantees the continuous query results are 
always correct with respect to the current database. 

Deadlock-free: Deadlock-free is assured as long as the 
common sources are not accessed in an opposite order. The 
Blink-tree is deadlock-free internally [14], as long as the tree 
node locks (BL in Object Movement) are requested based on 
a global order. The locks in OLM, QLM, or R-table (OL, QL 
or RL in Figure 7) are deadlock-free, because the locks on 
any of these sub-structures in one operation are requested at 
the same time. The combination of these locks on different 
sub-structures will not cause any deadlock since they are 

requested in the same order. OL are placed before QL, and 
QL are before RL in this framework. Therefore, the proposed 
concurrency control protocol is deadlock-free. 

VI. EXPERIMENTS 

To evaluate the performance of the proposed framework, 
a set of extensive experiments on benchmark data sets have 
been conducted by measuring the throughputs (number of 
operations processed per second) of concurrent operations. 
The design of experiments is illustrated in Figure 9. The 
benchmark data sets were generated by a network-based 
moving objects generator [17] using the road network of City 
of Oldenburg, as shown in Figure 8. Three classes of moving 
objects and moving queries were set to represent vehicles, 
bicycles, and pedestrians. Half of the initial moving objects 
generated were used as moving objects, and the rest of the 
initial objects were expanded to range queries by specifying 
a certain size. To map the locations of the objects and 
queries to an one-dimensional space, the Hilbert curves with 
different orders were applied in the framework.  Based on 
the moving object set and the Hilbert curve, a Blink-tree was 
constructed. On the other hand, the object movements 
simulated by the generator were translated into object 
location updates and query updates. These location updates 
and a set of random query report operations were sent to the 
system as a multi-thread batch job. The overall processing 
time for each set of operations was collected to calculate the 
throughput.  

    
Figure 8. Road network of Oldenburg and data. 

In the experiments, six parameters were varied to simulate 
different application scenarios and demonstrate their impacts 
on the system performance. These parameters are listed as 
follows.  
• Order: the order of the Hilbert curve applied. It 

determines the number of cells for the whole space.  
• Data_size: the number of initial moving objects/moving 

queries.  
• Mobility: the total number of concurrent location updates 

for objects and queries issued in a batch. 
• OM_ratio: the percentage of object location updates in 

Mobility.  
• QR_ratio: the portion of query reports compared to 

Mobility.  
• Q_size: the side length of query window for each moving 

query. It simulates query ranges in different applications. 

BL  Locks for Blink-tree nodes; OL  Locks for OLM cells;  
QL  Locks for QLM cells; RL  Locks for R-table entries 
Object Movement:        Query Movement:        Query Report:  
 

RL 
QL 
OL RLBL 

RL 
QL 

OL 

QR_Ratio 

Continuous Query 
Processing  

Figure 9. Experiment design. 
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The performance of the framework is evaluated by 
varying these parameters. The default settings and ranges of 
these parameters are listed in TABLE 2. 

TABLE 2. EXPERIMENT PARAMETERS. 
 Order Data_Size Mobility OM_ratio QR_ratio Q_size 

Default 8 N/A 2K 50% 5% 5 
Range 8~12 50K~150K 2K~10K 10%~90% 5%~25% 5~25 

The proposed framework was implemented in Java using 
JDK 1.5. The experiment system was built on a desktop with 
a Pentium-D 2.8 GHz CPU. Three sets of initial moving 
objects and moving queries were used in each set of 
experiments, with data_size 150K, 100K, and 50K, 
respectively. The average throughputs under different 
parameter settings were calculated by collecting the average 
processing time of ten batch executions. For comparison, the 
continuous query processing extended from CLAM [6] with 
serializable isolation (indicated as CI) was implemented. CI 
treats the suboperations on each single index as an item in a 
transaction. The CI operations under the proposed 
framework acquire locks before accessing all the required 
resources, except Blink-tree nodes, and release them at 
commit point. CI inherits the query processing of the 
proposed approach by fusing the link-based and lock-
coupling locking strategies. The only difference is that CI 
does not optimize the lock duration for query locks and 
QLM locks. This CI approach applies the link-based locking 
on the Blink-tree, which has been shown to have fewer 
read/write conflicts with less maintenance overhead than 
lock-coupling protocols, therefore it can achieve higher 
throughputs than a pure lock-coupling approach. Note that 
the proposed approach was compared to a non-trivial method 
to demonstrate its advantages. Since there is no existing 
protocols to provide serializable isolation for continuous 
query processing, to the best of our knowledge, CI is the 
most matchable solution to compare with. The detailed 
experiment results are presented in the following 
subsections. 

A. Throughput vs. Mobility 
In this set of experiments, the impact of mobility was 

studied by capturing the throughputs of continuous query 
processing with different numbers of movements. Basically, 
a higher mobility means more objects and queries that report 
their movements at the same time. Consequently, as more 
movements need to be processed, the processing queue 
becomes longer and the queuing time for each movement 
will be increased. This can be verified by the results 
illustrated in Figure 10, where the X-axis indicates the 
mobility value and the Y-axis represents the system 
throughput. When the mobility increased from 2,000 to 
10,000, the system throughputs on all the data sets decreased 
by more than 60%.  

Comparing the results from different data sets, the smaller 
data set always performed better than the larger ones. The 
throughput of the 50K data set was about three times better 
than that of the 100K data set. Similarly, the performance of 
the 150K data set was about 15% worse than the 100K data 

set. The reason of these significant gaps is that a smaller data 
set requires a smaller Blink-tree, less data pages for each Blink-
tree leaf entry, and smaller hash tables. Therefore, less I/O is 
consumed for a movement in smaller data sets. 

 
Figure 10. Throughput vs. mobility. 

Another fact observed from this set of experiments is that 
the proposed approach performed 10~20% better than the CI 
method. This means the design of the proposed concurrency 
control protocol reached a higher concurrency level by 
optimizing the lock durations. This improvement can be 
further enhanced by running on more processing units. 

B. Throughput vs. OM_ratio 
This set of experiments demonstrated the trend of 

throughput when increasing OM_ratio. A higher OM_ratio 
means more object movements within a given mobility. The 
results are shown in Figure 11, where the X-axis represents 
OM_ratio and the Y-axis indicates the throughput. As 
observed from the figure, the performance of concurrent 
continuous query processing dropped significantly when 
OM_ratio increased from 10% to 90%.  

When OM_ratio was set to 0.1, the system performed 
surprisingly well on all the three data sets. These high 
throughputs then decreased quadratically. This is because the 
object movement requires updating the Blink-tree, while the 
query movement only updates hash tables. Updates on a 
Blink-tree are costly compared to updating a hash table, 
because they not only require more I/O operations to locate 
the data page, but also have to perform node split/merge 
sometimes. Furthermore, one update operation on the Q-
table only locks that single query, but the Blink-tree needs to 
lock nodes during updating, which involves multiple objects 
and causes more conflicts. These results justify the design of 
applying a hash table to index queries, and suggest that query 
movement in the proposed framework is more efficient than 
object movement. 

 
Figure 11. Throughput vs. OM_ratio. 
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The corresponding throughputs of CI approach showed a 
similar trend, but always lower than the proposed framework 
by 10~20%. The improvement was more significant when 
OM_ratio was low, because the proposed concurrency 
control protocol reduces the lock duration mainly for QLM 
and the locks on queries. Therefore, the performance of 
continuous monitoring with more query movements was 
promoted as expected. 

C. Throughput vs. Q_size 
The relationship between throughput and Q_size was 

studied in this set of experiments. Q_size was increased 
gradually from 5 to 25 to probe its impact on the system 
performance. The results are illustrated in Figure 12, where 
the X-axis represents Q_size and the Y-axis shows the 
throughput. In all the three data sets, although the smaller 
data sets outperformed the larger ones, the throughputs kept 
constant when Q_size increased. From this figure, obviously 
Q_size did not show much impact on the performance. The 
reason is that a query window with size 25*25 is still small 
comparing to the data space. With this query window, a Blink-
tree search can most likely find the results within one data 
page. In this case, a range search requires the same I/O cost 
as a point search. 

 
Figure 12. Throughput vs. Q_size. 

Similarly, the throughputs of the data sets applying CI 
approach were constant when Q_size varied. The CI 
approach on each data set performed about 10~20% worse 
than the proposed concurrency control protocol on the same 
data set. 

D. Throughput vs. QR_ratio 
The focus of this set of experiments was to study the 

impact of QR_ratio on concurrent continuous query 
processing. QR_ratio was gradually increased from 5% to 
25%, and the corresponding throughputs on three data sets 
were collected and compared. The results are plotted in 
Figure 13, where the X-axis indicates QR_ratio and 
throughput is represented in the Y-axis.  

As shown in the figure, the throughputs of three data sets 
slightly decreased when QR_ratio raised significantly. When 
QR_ratio increased from 5% to 25%, the throughputs only 
reduced about 5%. These results suggest that the cost for a 
query report operation is negligible to the system comparing 
to object movement and query movement. These results can 
be well explained via the design of this concurrent 

continuous query framework. Query report, as illustrated in 
Algorithm 3, only requests a read-lock on the given query, 
and reads the corresponding entry in the R-table. It is a 
memory-based operation and can hardly block other 
operations.  

 
Figure 13. Throughput vs. QR_ratio. 

On the other hand, as expected, the performance of CI 
approach was always 10%~20% worse than the proposed 
approach, and decreased in the same speed as the proposed 
concurrent operations on the corresponding data set. 

E. Throughput vs. SFC Order 
This set of experiments demonstrate the impact of the 

order of SFC mapping on the performance of concurrent 
continuous query processing. The Hilbert curves with order 
8, 10, and 12 were used to construct Blink-trees on the 150K 
moving object set. Obviously, a higher SFC order results in 
finer cells in space, and consequently more cell IDs will be 
indexed in Blink-tree. In other words, less objects will be 
contained in a single cell. 

 
a) Over OM_ratio. 

 
b) Over Q_size. 

Figure 14. Throughput vs. SFC order. 

OM_ratio and Q_size were varied in the experiments to 
investigate the impact of order in different scenarios. As 
illustrated in Figure 14 a), when OM_ratio increased from 
0.1 to 0.9, the throughput of the system on different data sets 
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kept decreasing. In most of the cases, the Hilbert curve with 
order 12 performed better than order 10, and the curve with 
order 10 performed better than order 8. That is because: 1) 
When SFC order is higher, the Blink-tree has more nodes, and 
the locks on Blink-tree nodes have less chances to cause 
conflict; 2) High concurrency can be achieved by having 
more cells in OLM and QLM; 3) With a higher SFC order, 
there are less data pages associated with a Blink-tree leaf 
entry, leading to less I/O for moving object retrieval/update. 
Interestingly, when OM_ratio was 10%, the Hilbert curve 
with order 10 performed the best among the three orders. For 
the order 12 Hilbert curve with a small OM_ratio, the 
improvement from finer lock granules and more efficient 
Blink-tree data accesses was compensated by the additional 
cost of the Hilbert curve mapping function calculation. 

Observing the performance of the corresponding CI 
approach, the CI on the Hilbert curve with order 10 did not 
reflect the advantage of finer lock granules as significant as 
the proposed approach, because of its increased lock 
durations caused by the Hilbert mapping calculation.  

When Q_size was increased from 5 to 25 in Figure 14 b), 
the Hilbert curve with order 12 performed better than order 
10 in most cases, and the curve with order 10 outperfomed 
order 8 all the time. Furthermore, the improvement from 
order 8 to order 10 was greater than that from order 10 to 
order 12. On the other hand, the Hilbert curves with order 8 
and 10 performed constantly, behaving similarly as 
discussed in Subsection C. However, the Hilbert curve with 
order 12 exhibited a 20% performance drop in the figure 
when Q_size increased. These results suggest that the cell 
size in the Hilbert curve with order 12 is comparably small to 
the query sizes. Therefore, a query may need to scan 
multiple cells to locate the moving objects. 

Concluded from the above experiment results, the 
proposed concurrent continuous query processing optimizes 
the locking strategy and improves the concurrency level. The 
parameters, including order, mobility, data_size, and 
OM_ratio are found having significant impacts on the 
performance of the proposed framework. Within these 
parameters, the increasing of mobility, data_size, or 
OM_ratio degraded the system performance, whereas a 
higher order promoted the throughput. 

VII. CONCLUSION 

This paper proposes a framework for concurrent 
continuous query processing based on the B-tree and SFC. 
Indices for moving objects, moving queries, and query 
results have been integrated to efficiently handle movements 
and query reports. The proposed concurrency control 
protocol optimizes the locking strategy and provides 
serializable isolation, data consistency, and deadlock-free. Its 
correctness has been proved by analyzing the lock durations 
of the operations, and the performance has been evaluated by 
a set of extensive experiments. This work provides the 
applicability of efficient continuous query processing in 
multi-user systems, and offers expandability to other B-tree-

based moving object management approaches. Future efforts 
could be devoted to applying this framework to motion-
based spatial-temporal databases, such as the Bx-tree and the 
BBx-tree. Expanding this concurrency control protocol to R-
tree-based indexing structures would also be an interesting 
direction.  
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