
On Locally Linear Classification by Pairwise Coupling

Feng Chen, Chang-Tien Lu, Arnold P. Boedihardjo
Virginia Polytechnic Institute and State University

7054 Haycock Road, Falls Church, VA, 22043
{chenf, ctlu, arnold.p.boedihardjo}@vt.edu

Abstract

Locally linear classification by pairwise coupling ad-
dresses a nonlinear classification problem by three basic
phases: decompose the classes of complex concepts into lin-
early separable subclasses, learn a linear classifier for each
pair, and combine pairwise classifiers into a single classi-
fier. A number of methods have been proposed in this frame-
work. However, these methods have two major deficiencies:
1) lack of systematic evaluation of this framework; 2) naive
application of clustering algorithms to generate subclasses.
This paper proves the equivalence between three popular
combination schemas under general settings, defines sev-
eral global criterion functions for measuring the goodness
of subclasses, and presents a supervised greedy clustering
algorithm to optimize the proposed criterion functions. Ex-
tensive experiments were conducted to validate the effec-
tiveness of the proposed techniques.

1 Introduction

In recent years, there has been an emerging interest to
solve a complex (nonlinear) classification problem by using
locally linear classification (LLC) techniques [2–5]. The ba-
sic idea is to approximate a nonlinear decision boundary by
consecutive segments, each of which is determined by a lo-
cal linear classifier. Results have shown that this approach
can achieve competitive generalization accuracy and higher
training efficiency than other advanced approaches such as
neural network [3], generalized linear discriminative analy-
sis [4], and nonlinear support vector machines [1].

The effectiveness of LLC lies in the fact that each local
classifier requires estimating a much simpler target func-
tion, thus reducing the chance of overfitting. However, as
a potential disadvantage, more target functions need to be
estimated with less training data. An implicit assumption
of LLC is that the gain acquired by the reduced complex-
ity is more than the loss incurred by the “reduced” train-
ing data. LLC includes three major categories: pairwise
coupling based (LLC-PC) [2, 3, 5], local space based (LLC-

LS) [4], and model based (LLC-MD) [1, 8]. LLC-PC de-
composes the classes of complex concepts into linearly sep-
arable subclasses, then learns a linear prototype classifier
for each pair of subclasses, and finally combines the pair-
wise prototype classifiers into a single classifier. LLC-LS
divides the input space into several disjoint subspaces, and
then learns a linear classifier for each subspace. LLC-MD
assumes each class as a mixture of normals and learns an
LDA classifier by treating each normal as a pseudo-class.

This paper focuses on LLC-PC, the Locally Linear
Classification by Pairwise Coupling. It is a natural gener-
alization of the state-of-the-art multiclass classification ap-
proach by pairwise coupling [7]. Existing methods for LLC-
PC apply naive clustering methods (e.g., k-means) to gener-
ate subclasses, and present different combination schemas
(e.g., voting, MinMax) to integrate pairwise prototype clas-
sifiers [2, 3, 5]. Some empirical comparisons demonstrate
similar classification accuracy between different combina-
tion schemas [3]. However, there is no research presented
to explain this phenomenon.

We address two major issues: First, the generation of
appropriate subclasses can not be optimally solved by di-
rectly applying general clustering algorithms. This is due
to the main principle for solving problems using a restricted
amount of information: “When solving a given problem, try
to avoid solving a more general problem as an intermediate
step [9].” A supervised clustering algorithm must be de-
signed by considering the impacts of other phases. Second,
there should exist some connections between different com-
bination schemas, in order to explain the fact that they usu-
ally exhibit similar classification accuracy. As shown later,
the connections lead to a new reformulation of the pairwise
coupling problem as a voronoi diagram problem, thus intro-
ducing a new direction to further optimize LLC-PC.

The rest of the paper is organized as follows. Section
2 presents preliminaries of LLC-PC. Section 3 defines new
criterion functions and discuses their major characteristics.
Section 4 presents a greedy subclasses generation algo-
rithm. Experiments and conclusion are discussed in sections
5 and 6, respectively.
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2 Preliminaries
This section discusses three popular combination

schemas. Suppose there are N classes {C1,C2, . . . ,CN}, each
class Ci (i = 1, . . . ,N) is divided into Ni pseudo clusters
(Ci1,Ci2, . . . ,CiNi), and the separating hyperplane for Ci j and
Ckp is fi j−kp(x) = wT

i j−kpx + b. Three popular combination
schemas can be summarized as follows:

Voting based: The decision function for the subclass
Ci j can be defined by Fi j(x) = ∑N

k �=i,k=1 ∑Nk
p=1(δ( fi j−kp(x))),

where δ(z) = 1 if z ≥ 0, and 0 otherwise. The deci-
sion function for the class Ci can be defined by Fi(x) =
max(Fi j(x)/∑N

o=1,o�=i No), where 1 ≤ j ≤ Ni, and the de-
nominator is used for normalization, since the number
of subclasses generated for each class may be differ-
ent. The new point x is classified as follows: G(x) =
argmaxi=1,...,N(Fi(x)).

Probability based: The decision function Fi j(x) can
be defined by Fi j(x) = Prob(y = Ci j|x), where the pos-
terior probability Prob(y = Ci j|x) can be estimated from
the available pairwise class probabilities Probi j−kp =
Prob(y = Ci j|y = Ci j or Ckp,x) [7]. The decision func-
tion Fi(x) is defined by Fi(x) = max(Fi j(x)), where 1 ≤
j ≤ Ni. The new point x is classified as follows: G(x) =
argmaxi=1,,...,N(Fi(x)).

MinMax based: The decision function Fi j(x) =
min( fi j−kp(x)), where k �= i. The decision function Fi(x) =
max(Fi j(x)), where 1≤ j ≤Ni. The new point x is classified
as follows: G(x) = argmaxi=1,,...,N(Fi(x)).

Theorem 2.1 (Equivalence). Given a new object x, if
one of the following conditions is true, then G(x)Voting =
G(x)MinMax = G(x)Prob:

(1) ∃i, j(1 ≤ i ≤ N,1 ≤ j ≤ Ni), Fi j(x)Voting = ∑N
k=1,k �=i Nk;

(2) ∃i, j(1 ≤ i ≤ N,1 ≤ j ≤ Ni), Fi j(x)MinMax > 0;

(3) ∃i, j(1 ≤ i ≤ N,1 ≤ j ≤ Ni), Fi j(x)Prob > Fkp(x)Prob,
where k �= i;

Readers are referred to [11] for a detailed proof.
These three schemas, as well as their equivalence, are il-

lustrated in Figure 1. There are two classes {C1,C2}, and
their subclasses are {C11,C12} and {C21,C22}, respectively.
For each object x inside the region ABCNMA, the sub-
class C11 wins the competitions against the subclasses C21

and C22. Then, F11(x)Voting = 2, and G(x)Voting = C1. Be-
cause f11−22(x) > 0 and f11−21(x) > 0, F11(x)MinMax > 0 and
G(x)MinMax = C1. Also, because Prob(y = C11|x) is larger
than Prob(y = C21|x) and Prob(y = C22|x), G(x)Prob = C1.
Therefore, the three schemas are equivalent inside the re-
gion ABCNMA. Similarly, the equivalence is held in the
regions CDEONC, EFGPOE, and GHAMPG. However,
inside the small center region MNOPM, the above condi-
tions are not satisfied and therefore the equivalence is not
guaranteed.

Figure 1: An example of combination schemas

Theorem 2.1 indicates that the three combination
schemas are equivalent inside certain regions. As shown
in Section 5.1, we empirically verified that these equivalent
regions occupy in overall more than 99% of the whole input
space. That means, these combination schemas are equiv-
alent in most cases. It explains why different combination
schemas usually exhibit similar accuracy.

Another observation is that, since the conflicts rarely
happen in practice, we can reasonably assume that Theo-
rem 2.1 is true for the whole space. Under this assumption,
the pairwise coupling becomes equivalent to a Voronoi di-
agram problem [10]. Particularly, each subclass (Ci j) has a
dominated region (Voronoi polytope), which is bounded by
a subset of the related linear prototype classifiers (separat-
ing hyperplanes). If a new object x is within the dominated
region of the sub-class Ci j, then it is classified to the class Ci.
Thus, the pairwise coupling problem can be re-formulated
as: “Given a new object x, search for a class region (Voronoi
polytope), which contains the object x.” Based on this re-
formulation, traditional Voronoi techniques [10] can be con-
veniently adapted to identify the dominated region for each
subclass. The significant (necessary) and insignificant (re-
dundant) prototype classifiers can also be easily identified.
Redundant prototype classifiers refer to the prototype clas-
sifiers that do not contribute to the decision boundary of the
resulting combined classifier. In addition, spatial indexing
structures (e.g., R-tree) can be utilized to index the subclass
regions, such that the classification time cost can be signifi-
cant reduced.

3 Criterion Functions
This section addresses the criterion functions which can

measure the generalization accuracy of the combined classi-
fier, by considering a number of factors such as the division
of original classes, the binary classifier model, the combi-
nation schema, and the computational cost. Many existing
methods directly use general clustering criterion functions
(e.g., total intra-cluster variance [1]) to measure the quality
of subclasses generated. However, the subclasses that min-
imize total intra-cluster variance do not necessarily lead to
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the classifier of high generalization accuracy.

3.1 Mean Piecewise Error Function

The mean piecewise error function can be formalized as:

Q = ∑
(Ci j ,Ckp)∈U

(
Pi j−kpE(Ci j,Ckp)

)
, (1)

where U = {(Ci j,Ckp)|1 ≤ i,k ≤ N, i �= k,1 ≤ j ≤ Ni,1 ≤
p ≤ Nk}, N denotes the total number of original classes,
Ni denotes the number of subclasses of Ci, Pi j−kp denotes
the prior probability of the subclass pair (Ci j,Ckp), and
E(Ci j,Ckp) denotes the generalization error between Ci j and
Ckp. The prior probabilities are used as the weights to
balance the contributions of different subclasses. We set
Pi j−kp = Pi j ·Pkp/ ∑

(Ci j ,Ckp)∈U
Pi j ·Pkp, where Pi j = |Ci j|/S, the

ratio of the sample size of Ci j to the total sample size.
The selection of the atomic error function E(Ci j,Ckp) de-

pends on the binary classifier model used for the subclasses
Ci j and Ckp. We consider two popular linear classifier mod-
els, including Fisher linear discriminant analysis (LDA) and
linear support vector machines (SVM). We select an iden-
tical classifier model for each pair of subclasses with de-
fault parameter settings. Depending on the specific clas-
sifier model selected, we abbreviate the related mean piece-
wise error (MPE) function as MPE-SVM or MPE-LDA. The
whole category of MPE functions is abbreviated as MPE.

MPE-LDA selects the inverse of Fisher criterion [1], the
ratio of the between-class variance to the within-class vari-
ance, as the atomic error function. It can be formalized as

Q =∑(Pi j−kp(wt
i j−kpSW,i j−kpwi j−kp)(wt

i j−kpSB,i j−kpwi j−kp)−1)
(2)

, where SW,i j−kp = Si j +Skp and SB,i j−kp = (mi j −m̄)(mi j −
m̄)t +(mkp −m̄)(mkp −m̄)t are the within-class scatter ma-
trix and the between-class scatter matrix, respectively; Si j

is the within-class covariance matrix of subclass Ci j, mi j

is the mean vector of subclass Ci j, and similar definitions
are used for Skp and mkp. m̄ = (mi j + mkp)/2. wi j−kp =
S−1

W,i j−kp(mi j −mkp). The definitions of other symbols are
consistent with the related definitions for Equation (1).

MPE-SVM selects the error function of a linear SVM
model, the addition of the inverse classifier margin to the
empirical error, as the atomic error function. It can be for-
malized as follows:

Q = ∑
(

Pi j−kp
1
2
‖wi j−kp‖2

)
+C∑

(
Pi j−kp

mi j−kp

∑
o=1

ζo,i j−kp

)
,

(3)
where 1

2‖wi j−kp‖2 and ζo,i j−kp refer to the inverse classifier
margin and the slack variables for subclasses Ci j and Ckp,
respectively; mi j−kp refers to the number of slack variables,
and C denotes a tradeoff parameter. For simplicity, we as-
sume that the tradeoffs of all SVM classifiers are identical.

The left part of the equation is the weighted sum of the in-
verse margins of pairwise SVM classifiers, which can be
regarded as the approximate structure error of the combined
classifier. The right part of the equation is the weighted sum
of the slack variables of pairwise SVM classifiers, which
can be viewed as the approximate empirical error of the
combined classifier. The parameter C is used to balance the
contributions of the classifier margin and the empirical er-
ror.

3.2 Major Characteristics

This subsection evaluates the correlation between the
proposed criterion functions and the cluster granularity, and
conducts a comparison between these criterion functions.

Theorem 3.1 (Monotonicity of MPE-SVM). Given a data
set of N classes (C1, ...,CN), suppose each class Ci has Ni

subclasses, then the value of MPE-SVM can be decreased
by randomly decomposing one subclass into two smaller-
size subclasses.

Theorem 3.2. Given a data set of N classes, the values of
the criterion functions MPE-SVM and MPE-LDA are mini-
mized if the maximum number of subclasses are generated
for each class.

Theorem 3.3. Given a data set of N(N > 1) classes, if
the maximum number of subclasses are generated for each
class, then the resulting classifier is equivalent to a 1-
nearest-neighbor classifier.

Readers are referred to [11] for detailed proofs.

MPE-LDA vs. MPE-SVM

First, we consider the case when each class only contains
one cluster (the lowest cluster granularity). In this case,
these two functions degeneralize to LDA and SVM, respec-
tively. Results have been shown that in overall SVM can
achieve higher classification accuracy than LDA [1]. The
possible reason is that SVM considers both empirical error
and structure capacity and is based on recent advances in
statistical learning theory [9]. In comparison, LDA assumes
that each class is normally distributed with common covari-
ances. This assumption is usually not held in real applica-
tions. However, LDA is much more efficient to compute
and easier to understand than SVM. Particularly, LDA and
SVM have the time complexities of O(d2n) and O(d2nδ),
respectively, where d refers to the dimension cardinality, n
refers to the training sample size, and δ > 1.

Second, we consider the case when some classes have
more than one subclass. In this case, MPE-SVM appears
more stable than MPE-LDA. As shown in Theorem 3.1,
MPE-SVM has the important characteristic of monotonic-
ity with respect to the total number of subclasses. It is also
more resilient to outliers. In comparison, MPE-LDA does
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not have the feature of monotonicity and requires calculat-
ing the inverse of the within-class scatter matrix for each
pair of subclasses. If some subclasses have singular covari-
ance matrixes (e.g., outlier classes or the classes with cor-
related attributes), then the total score of MPE-LDA will be
affected. The selection of MPE-LDA or MPE-SVM is not
necessarily dependent on the classifier model used in the
pairwise prototype classifiers. For example, in the scenario
of limited computation, MPE-LDA may be used as the cri-
terion function to guide the generation of subclasses, even
though SVM is used latter to build the pairwise prototype
classifiers.

Characteristics of MPE

As demonstrated in Section 5, MPE exhibits much higher
accuracy than general clustering criterion functions (e.g., to-
tal intra-cluster variance). However, it still has several limi-
tations: 1) Dependence on Cluster Granularity. Theorem
3.2 indicates that MPE can always get the minimal value
at the highest cluster granularity. According to Theorem
3.3, the combined classifier degeneralizes to a 1-nearest-
neighbor classifier. It implies the requirement of a prede-
fined total number of subclasses to be generated. Otherwise,
the criterion functions may not be useful to find meaningful
subclasses. 2) Inappropriate for a Large Number of Sub-
classes. The total number of prototype classifiers is quadrat-
ically increased with the total number of subclasses. When
the number is high, the differences between the error scores
of prototype classifiers will be neutralized. As a result, MPE
will become insensitive to different generalizations of sub-
classes.

Variants of MPE

To alleviate the negative impacts of the large number of
prototype classifiers, we can redefine the set U (see equa-
tion (1)) as a small set of representative prototype classifiers.
Depending on the different definitions of the representative
classifiers, several variants of MPE can be derived. Due to
lack of space, we only briefly present two major variants.

The first variant is called Refined MPE (R-MPE), which
defines U as the set of necessary prototype classifiers. As
discussed in Section 2, by assuming that Theorem 2.1 is
true for the whole space, the pairwise coupling can be re-
formulated as a Voronoi diagram problem. Based on this
reformulation, many prototype classifiers are actually re-
dundant when the data is in a low-dimensional space (e.g.,
smaller than 10 dimensions). For example, suppose there
are totally N subclasses in a 2-dimensional space, then the
number of necessary prototype classifiers is smaller than
(3N −6) [10]. That means, even there are O(N2) prototype
classifiers, only a linear number of classifiers contribute to
the decision boundary of the resulting classifier.

Another variant is named Symmetric Nearest Neighbor
based MPE (SNN-MPE), which defines U as the pairs of

subclasses which are symmetric k-nearest neighbors. We
use the Euclidean distance between the centers of two sub-
classes as the proximity metric. The subclasses of a same
parent class are not considered as neighbors. The effective-
ness of SNN-MPE is based on an important observation that
the significant prototype classifiers are usually related to the
pairs of subclasses, which are close to each other. SNN-
MPE provides a parameter k to allow users to balance the
tradeoff between the computational cost and the accuracy.

4 A Greedy Clustering Algorithm
To evaluate the effectiveness of the proposed criterion

functions, this section presents a simple but effective super-
vised clustering algorithm named Greedy-MPE. It generates
the subclasses in a greedy manner to minimize the criterion
functions (MPE). The algorithm is described as follows:

Algorithm (Greedy-MPE). Given a data set of N classes
{C1, . . . ,CN} and the total number (K) of subclasses to be
generated,

1. Regard each class as a single cluster (subclass).
2. From the set U of subclass pairs, search for a

pair of subclasses (Ci j,Ckp) that has the maximum
weighted classification error F(Ci j,Ckp). The maxi-
mum weighted classification error indicates that this
pair of subclasses is currently most linearly insepara-
ble and hence can be regarded as the priority candidate
subclasses for further decompositions.

3. Select a subclass from Ci j and Ckp, which has the high-
est intra-class variance, and decompose it into two
smaller-size subclasses.

4. If the total number of the subclasses generated is
smaller than K, go to step 2. Otherwise, output the
current subclasses and terminate the algorithm.

The set U of candidate subclass pairs is determined by
a specific criterion function, which the algorithm greedily
minimizes. For example, for MPE, U refers to the pairs
of subclasses, which do not have the same parent class la-
bel. For SNN-MPE, U refers to the pairs of subclasses,
which are symmetric k-nearest neighbors. F(Ci j,Ckp) =
Pi j−kp ∗E(Ci j,Ckp), where Pi j−kp refers to the prior proba-
bility of the subclass pair (Ci j,Ckp), and E(Ci j,Ckp) refers
to the classification error between Ci j and Ckp. In the step
3, traditional clustering algorithms (e.g., k-means) can be
used to decompose the selected subclass into two smaller-
size subclasses.

The key issue of Greedy-MPE is to select an appropri-
ate subclass in each iteration for further splits. The cur-
rent selection bias is to prefer a subclass which is not well-
separatable from others and has a high intra-cluster vari-
ance. Two alternative selection biases may also be con-
sidered. The first is to prefer a subclass which has the
highest aggregated classification error over the related sub-
class pairs: argmaxCi j

(∑k �=i Pi j−kpE(Ci j,Ckp)). The second
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is to prefer a subclass which has the maximum gain of
MPE score: argmaxCi j

(Qbe f ore splitting Ci j −Qa f ter splitting Ci j),
where Qbe f ore splitting Ci j refers to the MPE score before split-
ting the subclass Ci j, and Qa f ter splitting Ci j refers to the MPE
score after splitting the subclass Ci j.

5 Experiment
This section demonstrates the equivalence between three

popular combination schemas under general settings (The-
orem 2.1), and compares the performances of the resulting
classifiers produced by different clustering methods.

Experimental Tools. We used linear SVM as the pro-
totype classifier and four different clustering algorithms to
generate subclasses: Greedy-MPE, k-means, hierarchical
clustering (HC), and EM clustering. The major settings
were as follows: 1) Euclidean distance was used as the
proximity metric, 2) the parameter “replicates” for k-means
(number of times to repeat the clustering) was set to 10, 3)
the link metric in the HC clustering algorithm was set to av-
erage link, and 4) the tradeoff parameter (C) for linear SVM
was set to 100. The default combination schema was the
voting-based. For k-means, HC, and EM, we generated the
same number of subclasses for each class.

Experimental Data Sets. In our experiments, we
used 22 benchmark data sets provided by UCI, STATLOG,
DELVE, and LIBSVM data repositories: flare solar, thy-
roid, breast cancer, breast-w, pima-diabetes, heart, image,
ringnorm, twonorm, waveform, german, diabetis, fourclass,
svmguide1, vehicle, page-block, segment, glass, satimage,
pendigits, optdigits, and letter. Among these data sets, the
range of class numbers is [2, 26], and the range of dimen-
sions is [2, 60]. Table 1 shows the detailed information of
six representative data sets. We generated 100 random par-
titions into training and test sets (mostly 60%:40%). On
each partition, we trained a classifier and then calculated its
test accuracy. The mean accuracy over all partitions was
reported. We considered the settings of cluster granularity
(the total number of subclasses) from 1 to 40.

Table 1: Some characteristics of experimental data sets

Dataset Source #Objects #features #classes

Thyroid UCI 140:75 3 2
Flare solar UCI 666:400 9 2

Image UCI 1300:1010 18 2
Glass UCI 128:86 9 6

Ringnorm DELVE 400:7000 20 2
Fourclass LIBSVM 517:345 2 2

Note: The numbers before and after ”:” are for training and
testing, respectively.

5.1 Combination Schemas

This subsection validates the equivalence between three
popular combination schemas (voting based, probability

based, and MinMax) on the generalization accuracy. As dis-
cussed in Section 2, these three combinations are provably
equivalent inside certain regions, which empirically consti-
tute a majority of the input space. To evaluate the percentage
of the provable equivalent area to the whole space, we used
k-means to generate subclasses and calculated the rate of
training and testing objects, which were within the provable
equivalent area. Figure 2 shows the experimental results
on the twenty-two benchmark data sets. The X-axis refers
to the total number of subclasses generated and the Y-axis
refers to the rate of training and testing objects which are
within the provable equivalent area. In the figure, there are
totally 306 sample points, and each sample point denotes
the result of a data set under a specific cluster granularity. A
linear regression line was generated to show the correlation
between the provable equivalent rate and the cluster granu-
larity. The results indicate that on average more than 99% of
objects are within the provable equivalent area. Another ob-
servation is that the provable equivalent rate has a tendency
of decreasing when the cluster granularity increases. That
means, when the cluster granularity is extremely high (e.g.,
200), these schemas will be significantly different. How-
ever, as shown later, the optimal number of subclasses is
usually smaller than 40 in practice.

Figure 2: Provable equivalent rate

Theorem 2.1 is the sufficient but not necessary condi-
tion of the equivalence. The objects which do not satisfy
Theorem 2.1 are still possibly equivalent for these com-
bination schemas. We observed that the actual equiva-
lent rate is much higher than the provable equivalent rate.
For example, among all the tested data sets, the actual
equivalent rate between the voting based and MinMax is
0.999± 0.002. As to the non-equivalent objects, in which
the voting based and MinMax reported different results,
these two schemas have the test accuracies close to a ran-
dom assignment. For instance, among fourteen binary data
sets, the voting based and MinMax schemas have the test
accuracies of 0.52± 0.33 and 0.48± 0.33, respectively, on
the non-equivalent objects.

5.2 Subclass Generation

This subsection compares the performances of the LLC-
PC classifiers led by Greedy-MPE and three popular cluster-
ing algorithms, k-means, HC, and EM. Figure 3 shows par-

753753



5 10 15 20 25 30 35 40
65

70

75

80

85

Total number of subclasses

T
es

t c
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Greedy−MPE
k−Means
HC
EM

(a) Ringnorm

10 15 20 25 30 35 40

64

65

66

67

68

69

70

Total number of subclasses

T
es

t c
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Greedy−MPE
k−Means
HC
EM

(b) Glass

5 10 15 20 25 30 35 40
90

91

92

93

94

95

Total number of subclasses

T
es

t c
la

ss
ifi

ca
tio

n 
ac

cu
ra

cy

Greedy−MPE
k−Means
HC
EM

(c) Thyroid

Figure 3: Comparison on test classification accuracy

tial results on test classification accuracy. The X-axis refers
to the total number of subclasses, and the Y-axis refers to
the test accuracy. The results indicate that Greedy-MPE is
more accurate and stable than general clustering algorithms
in most settings. For example, on the data set ringnorm,
the optimal test accuracy of Greedy-MPE is 10% higher
than those of the other algorithms. Note that, the optimal
test accuracy refers to the highest test accuracy over all the
settings. A possible explanation to this superiority is that
Greedy-MPE is guided by the criterion function MPE. Be-
cause MPE is specifically designed to measure the gener-
alization error of an LLC-PC classifier, a greedy division
of the training data to minimize MPE can be regarded as a
greedy division strategy to minimize the generalization er-
ror. Thus, the overall good (but not optimal) accuracy and
stability are guaranteed.

In comparison, general clustering algorithms exhibit in-
consistent performances on different data sets. For exam-
ple, the HC clustering algorithm can achieve comparable
optimal test accuracies to the others on thyroid, however, its
optimal test accuracy on ringnorm is 10% less than Greedy-
MPE. As shown in Figure 3, this pattern of inconsistency is
also exhibited in all the settings. It is important to compare
the algorithms over all the settings, since in practice it is
difficult to accurately estimate the optimal number of sub-
classes. Other tested benchmark data exhibit similar trends.
Readers are referred to [11] for the experimental results on
more data sets (e.g., image, fourclass, flare solar), and the
time cost comparison between different algorithms.

6 Conclusion and Future Work

This paper conducts a systematic and experimental eval-
uation of LLC-PC, including the equivalence between dif-
ferent combination schemas, the criterion functions, and the
sub-class generation algorithms. In the future, we plan to
conduct empirical comparisons between LLC-PC and other
categories, LLC-LS and LLC-MD, and summarize the ap-
propriate applications for each one. We will also study the
theoretical connections between different categories and de-
sign a general framework for LLC.
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