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Abstract

Spatial outliers represent locations which are significantly different from their
neighborhoods even though they may not be significantly different from the entire
population. Identification of spatial outliers can lead to the discovery of unex-
pected, interesting, and implicit knowledge, such as local instability. In this paper,
we first provide a general definition of S-outliers for spatial outliers. This defini-
tion subsumes the traditional definitions of spatial outliers. Second, we charac-
terize the computation structure of spatial outlier detection methods and present
scalable algorithms. Third, we provide a cost model of the proposed algorithms.
Finally, we provide experimental evaluations of our algorithms using a Minneapolis-
St. Paul(Twin Cities) traffic data set.
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1 Introduction

Global outliers have been informally defined as observations in a data set which appear
to be inconsistent with the remainder of that set of data [2], or which deviate so much
from other observations so as to arouse suspicions that they were generated by a different
mechanism [9]. The identification of global outliers can lead to the discovery of unex-
pected knowledge and has a number of practical applications in areas such as credit card
fraud, athlete performance analysis, voting irregularity, and severe weather prediction.
This paper focuses on spatial outliers, i.e., observations which appear to be inconsistent
with their neighborhoods. Detecting spatial outliers is useful in many applications of ge-
ographic information systems and spatial databases [23, 24]. These application domains
include transportation, ecology, public safety, public health, climatology, and location
based services.

We model a spatial data set to be a collection of spatially referenced objects, such as
houses, roads, and traffic sensors. Spatial objects have two distinct categories of dimen-
sions [27] along which attributes may be measured. Categories of dimensions* of interest
are spatial and non-spatial. Spatial attributes of a spatially referenced object includes
location, shape, and other geometric or topological properties. Non-spatial attributes of
a spatially referenced object include traffic-sensor-identifiers, manufacturer, owner, age,
and measurement readings. A spatial neighborhood [27] of a spatially referenced ob-
ject is a subset of the spatial data based on a spatial dimension, e.g., location. Spatial
neighborhoods may be defined based on spatial attributes, e.g., location, using spatial
relationships such as distance or adjacency. Comparisons between spatially referenced
objects are based on non-spatial attributes.

A spatial outlier is a spatially referenced object whose non-spatial attribute values
are significantly different from those of other spatially referenced objects in its spatial
neighborhood. Informally, a spatial outlier is a local instability (in values of non-spatial
attributes) or a spatially referenced object whose non-spatial attributes are extreme rel-
ative to its neighbors, even though they may not be significantly different from the entire
population. For example, a new house in an old neighborhood of a growing metropolitan
area is a spatial outlier based on the non-spatial attribute house age.

In this paper, we provide a general definition of spatial outliers and propose effi-
cient spatial outlier detection algorithms. We provide cost models for outlier detection
algorithms, and compare alternative underlying data clustering methods. We also exper-
imentally evaluate the proposed algorithm using a Minneapolis-St. Paul (Twin Cities)
traffic data set.

*Examination of other categories of dimensions, e.g., temporal, is beyond the scope of this paper and
may be explored in future work.



1.1 An Illustrative Application Domain

The Traffic Management Center [18] Freeway Operations group archives traffic mea-
surements from the freeway system in Minneapolis-St. Paul (Twin Cities). The sensor
network includes about nine hundred stations, each of which contains one to four loop
detectors, depending on the number of lanes. Sensors embedded in the freeways mon-
itor the volume of traffic on the road. At regular intervals, this information is sent to
the Traffic Management Center for operational purposes, e.g., ramp meter control, and
research on traffic modeling and experiments.

In this application, each station is a spatially referenced object with spatial at-
tributes(e.g., location) and non-spatial attributes(e.g., measurements). Spatial arrange-
ment of stations can be modeled as a spatial graph [25]. A directed edge from station
s1 to station sy indicates the existence of a road segment allowing traffic to move from
s1 to so. This graph is called a spatial graph because nodes, i.e., stations, are located
in a Euclidean space [27] where each node has a location specified by coordinates, e.g.,
<highway, mile point>. The non-spatial attributes include sensor-id and traffic measure-
ments (e.g., volume, occupancy). We are interested in discovering the location of stations
whose measurements are inconsistent with those of their neighbors. This spatial outlier
detection task is formalized as follow.

Let the traffic sensors constitute a collection of spatially referenced objects. The
location of a sensor represents a spatial attribute and is represented by the symbol z.
A traffic measurement (e.g., volume) constitutes a non-spatial attribute space and is
represented as f(z). The neighborhood of x, N(x), is the set of traffic sensors adjacent
to the sensor located at x. We note that the neighborhood relationship is based on
directed edges in the underlying spatial graph. Thus sensors on opposite sides (e.g.,
[-35W north bound and I-35W south bound) are not neighbors even if the pairwise
Euclidean distance is small. A sensor is compared to its neighborhood using the function
S(z) = [f(z) — Eyen(z)(f(y))], where f(x) is the attribute value for a location z, N(z)
is the set of neighbors of z, and Eycn)(f(y)) is the average attribute value for the
neighbors of z. The statistic function S(z) denotes the difference of the attribute value
of a sensor located at x and the average attribute value of z's neighbors.
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Figure 1: Example of a Spatial Statistic

Example:  We illustrate the computation of the spatial statistic S(z) using an
example, as shown in Figure 1. Consider location z3 in which the attribute value



f(z3) = 16, z3’s neighborhood set N(z3) = {z2, 24}, the average neighborhood at-
tribute value Eyen(f(y)) = 2322 = 22, and the spatial statistic function S(z) =

[f(z) = Eyen)(f(y))] = 16 — 22 = —6.

Theorem 1 Spatial Statistic S(x) is normally distributed if the attribute value f(x) is
normally distributed.

Proof: The formal proof is available in Appendix A.

A popular test for detecting spatial outliers for normally distributed f(z) can be
described as follows: Spatial statistic Z,) = \%:“ﬂ > 6. For each location x with an
attribute value f(x), the S(z) is the difference between the attribute value at location x
and the average attribute value of z's neighbors, u, is the mean value of S(z), and oy
is the value of the standard deviation of S(x) over all stations. The choice of # depends
on a specified confidence level. For example, a confidence level of 95 percent will lead to
0~ 2.

The assumption of a normal distribution for the f(z) and S(z) functions can be
tested in our traffic data set. In this data set, the volume values of all stations at
each time slot are approximately a normal distribution. A histogram of the numbers of
stations for different intervals of a non-spatial attribute, volume, is shown in Figure 2(a),
where a normal probability distribution curve is superimposed on the histogram. The
normal distribution seems to approximate the volume distribution reasonably well. We
calculated the interval of [y — o, u+ o], [u — 20, p+ 20], and [y — 30, u+ 30| where p and
o are the mean and standard deviation of the volume distribution, and the percentages
of measurements falling in the three intervals are equal to 68.27%, 95.45%, and 99.73%,
respectively. These values are quite close to the corresponding values(68%, 95%, and
100%) for a normal distribution [4]. Moreover, we plot the normal probability plot in
Figure 2(b), and it appears linear. Hence the values of the non-spatial attribute volume
for all stations at the same time are approximately a normal distribution. The difference
function, S(z) = [f(z) — Eyen(z)(f(¥))], which computes the difference of volume and the
average volume of corresponding neighbors, also seems normally distributed, as shown
in Figure 2(c). Given the confidence level 100(1-a)%, we can calculate the confidence
interval for the difference distributions, i.e., the difference value distribution lies between
the —z,/2 and 2,/ standard deviation of the mean. Those stations with a spatial statistic
Zy(z) value (standardized S(x)) greater than z,/, or less than —z,/, are classified as spatial
outliers.

1.2 Definition of S-Outliers

Consider a spatial framework SF =< S,NB >, where S is a set of locations
{51,82,...,8,} and NB : S x S — {True, False} is a neighbor relation over S. We
define a neighborhood N(z) of a location z in S using N B, specifically N(z) ={y |y €
S,NB(z,y) = True}.
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Figure 2: Verification of normal distribution for traffic volumes and volume difference
over neighbors

Definition: An object O is an S-outlier(f, f~ ., Fuirs, ST) if ST{Fus[f(z),

avgr (f(2),N(x))]} is true, where f : S — R is an attribute function, fiy,. : RY — R is
an aggregation function for the values of f over neighborhood, R is a set of real numbers,
Fuifr : R x R — R is a difference function, and ST : R — {T'rue, False} is a statistic
test procedure for determining statistical significance.

Example 1. The spatial outliers defined in Section 1.1 are examples of S-outliers.
We can define respective components in the traffic application domain as follows. The f
is the non-spatial attribute, namely, traffic volume. The neighborhood aggregate function

avgr () = Eyen(z)(f(y)) is the average attribute value function over neighborhood N(z).
The difference function Fyrr(z) is S(z) = [f(z) — Eyen)(f(y))], ie., the arithmetic
difference between attribute function f(z) and neighborhood aggregate function fJ . (z).
Let f14z) and o4(;) be the mean and standard deviation of the difference function Fy;yy;

S(z)_l"‘s T
)= ‘703(@( > 0.

Example 2. A DB(p, D)-outlier [15] is also an example of an S-outlier. For a k
dimensional data set 7" with N objects, an object O in T is a DB(p, D)-outlier if at least
a fraction p of the objects in T lies greater than distance D from O [15]. Assuming f2 .
is the number of objects within distance D from object O, the statistical test function

. __¢N
ST can be defined as (Tomé;umber of objects) ~ faggr(T) p. The DB-outlier subsumes many
otal number of objects)

other definitions of global outliers [15].

then the significance test function ST can be defined as Z,

1.3 Contribution, Outline, and Scope

This paper provides a general definition of spatial outliers and shows that various tests
for detecting spatial outliers are special cases. We identify the basic spatial-self-join com-



putational structure for the scalable implementation of spatial outlier tests and recognize
clustering methods to be the primary design decision influencing the total computational
cost. We also provide efficient strategies to implement a spatial outlier detection test
and evaluate our method in a Twin-Cities traffic data set to show its effectiveness and
usefulness.

The rest of the paper is organized as follows. Section 2 reviews related work and dis-
cusses our contributions. In Section 3, we discuss the computation structure for detecting
spatial outliers and propose our general outlier detection algorithms. The cost models
for proposed algorithms are analyzed in Section 4. Section 5 presents our experiment
design. The experimental observation and results are shown in Section 6. We summarize
our work and describe the future direction of our research in Section 7.

This paper focuses on spatial outlier detection using a single attribute. Outlier de-
tection in multi-dimensional space using multiple attributes is beyond the scope of this

paper.

2 Related Work

Many outlier detection algorithms [1, 2, 3, 13, 14, 20, 22, 28] have been recently proposed.
As shown in Figure 3(a), these methods can be broadly classified into two categories,
namely one-dimensional(linear) outlier detection methods and multi-dimensional outlier
detection methods. The one-dimensional outlier detection algorithms [2, 10] consider the
statistical distribution of non-spatial attribute values, ignoring the spatial relationships
between items. Numerous outlier detection tests, known as discordancy tests [2, 10],
have been developed for different circumstances, depending on the data distribution, the
number of expected outliers, and the types of expected outliers. The main idea is to fit
the data set to a known standard distribution, and develop a test based on distribution
properties. We use an example to illustrate the differences among one-dimensional and
multidimensional outlier detection methods. In Figure 4(a), the X-axis is the location
of data points in one dimensional space; the Y-axis is the attribute value for each data
point. One-dimensional outlier detection methods ignore the spatial location of each data
point, and fit the distribution model to the values of the non-spatial attribute. The outlier
detected using a one-dimensional approaches is the data point G, which has an extremely
high attribute value 7.9, exceeding the threshold of y+ 20 =4.494+ 2% 1.61 =7.71, as
shown in Figure 4(b). This test assumes a normal distribution for attribute values.
Multi-dimensional outlier detection methods can be further grouped into two cate-
gories, namely homogeneous multidimensional metric based methods and spatial meth-
ods. The homogeneous multidimensional methods model data sets as a collection of
points in a multidimensional isometric space, and provide tests based on concepts such
as distance, density, and convex-hull depth. These methods do not distinguish between
attribute dimensions and geo-spatial dimensions, and use all dimensions for defining
neighborhood as well as for comparison, as shown in Figure 3(b). We discuss representa-
tive methods now. Knorr and Ng presented the notion of distance-based outliers [13, 14].

5
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Figure 3: Classification and comparison of outlier detection methods

As discussed in example 2 of Section 1, for a k£ dimensional data set T" with N objects,
an object O in T is a DB(p, D)-outlier if at least a fraction p of the objects in T lies
greater than distance D from O. Ramaswamy et al. [21] proposed a formulation for
distance-based outliers based on the distance of a point from its k* nearest neighbor.
After ranking points by the distance to its k** nearest neighbor, the top n points are
declared as outliers. Breunig et al. [3] introduced the notion of a “local” outlier in which
the outlier-degree of an object is determined by taking into account the clustering struc-
ture in a bounded neighborhood of the object, e.g., & nearest neighbors. They formally
defined the outlier factor to capture this relative degree of isolation or outlierness. In
computational geometry, depth-based approaches [22, 20] organize data objects in convex
hull layers in data space according to peeling depth [20], and outliers are expected to be
found from data objects with shallow depth values. Yu et al. [28] introduced an outlier
detection approach, called FindQOut, which identifies outliers by removing clusters from
the original data. The key idea of this approach is to apply signal processing techniques
to transform the space and find the dense regions in the transformed space. The remain-
ing objects in the non-dense regions are labeled as outliers. In Figure 4(a), for example,
the outliers detected using homogeneous multidimensional approaches are the data point
D and L, which lie in a low density area.

Homogeneous multidimensional methods have several limitations. First, they are
designed to detect global outliers rather than spatial outliers. Second, they assume
that the data items are embedded in a isometric metric space and do not distinguish
between non-spatial attributes and spatial attributes. Third, they do not exploit apriori
information about the statistical distribution of attribute data. Last, they seldom provide
a confidence measure for the discovered outliers.
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Figure 4: A Data Set for Outlier Detection

Bi-partite multidimensional tests are designed to detect spatial outliers. They sep-
arate spatial attributes from attribute attributes, as shown in Figure 3(b). Spatial at-
tributes are used to characterize location, neighborhood, and distance. Non-spatial at-
tribute dimensions are used to compare a spatially referenced object to its neighbors. Spa-
tial statistics literature provides two kinds of bi-partite multidimensional tests, namely
graphical tests and quantitative tests. Graphical tests are based on visualization of spa-
tial data which highlight spatial outliers. Example methods include variogram clouds
[5] and Moran scatterplots [17]. Quantitative methods provide a precise test to distin-
guish spatial outliers from the remainder of data. Scatterplots [16] are a representative
technique from the quantitative family.

A variogram-cloud displays data points related by neighborhood relationships. For
each pair of locations, the square-root of the absolute difference between attribute values
at the locations versus the Euclidean distance between the locations are plotted. In
data sets exhibiting strong spatial dependence, the variance in the attribute differences
will increase with increasing distance between locations. Locations that are near to one
another, but with large attribute differences, might indicate a spatial outlier, even though
the values at both locations may appear to be reasonable when examining the data set
non-spatially. Figure 5(a) shows a variogram cloud for the example data set shown in
Figure 4(a). This plot shows that two pairs (P, S) and (Q,S) in the left hand side lie
above the main group of pairs, and are possibly related to spatial outliers. The point
S may be identified as a spatial outlier since it occurs in both pairs (@, S) and (P, S).
However, graphical tests of spatial outlier detection are limited by the lack of precise
criteria to distinguish spatial outliers. In addition, a variogram cloud requires non-trivial
post-processing of highlighted pairs to separate spatial outliers from their neighbors,
particularly when multiple outliers are present or density varies greatly.

A Moran scatterplot [17] is a plot of normalized attribute value (Z[f ()] = f(zt)ri;“f)
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Figure 5: Variogram Cloud and Moran Scatterplot to Detect Spatial Outliers

against the neighborhood average of normalized attribute values (W - Z), where W is the
row-normalized (i.e., >, Wj; = 1) neighborhood matrix, (i.e., W;; > 0 iff neighbor(3, j)).
The upper left and lower right quadrants of Figure 5(b) indicate a spatial association
of dissimilar values: low values surrounded by high value neighbors(e.g., points P and
@), and high values surrounded by low values (e.g,. point S). Thus we can identify
points(nodes) that are surrounded by unusually high or low value neighbors. These
points can be treated as spatial outliers.

Definition: Morangyuier is a point located in upper left and lower right quadrants of
Moran scatterplot. This point can be identified by (Z[f()]) x (32;(Wi; Z[f(5)])) <O.

Lemma 1 Moranguier %S a special case of an S-outlier.

Proof: For a Moran e, the difference functions are Z; and I;, where Z; =

>-;(Wi;Z[f(4)])), and py and oy are the mean and standard deviation of the attribute
function f(i). The statistic test function ST"is (Z[f(4)]) x (32;(Wi; Z[f(5)])) < 0.

A scatterplot [8, 16] shows attribute values on the X-axis and the average of the
attribute values in the neighborhood on the Y-axis. A least square regression line is used
to identify spatial outliers. A scatter sloping upward to the right indicates a positive
spatial autocorrelation (adjacent values tend to be similar); a scatter sloping upward
to the left indicates a negative spatial autocorrelation. The residual is defined as the
vertical distance (Y-axis) between a point P with location (X,,Y},) to the regression line
Y = mX + b, that is, residual € = Y, — (mX, + b). Cases with standardized residuals,
€standard = 6;“‘, greater than 3.0 or less than -3.0 are flagged as possible spatial outliers,
where f, andsae are the mean and standard deviation of the distribution of the error term
e. In Figure 6(a), a scatter plot shows the attribute values plotted against the average

f(i)_ﬂf I:
of 7t
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of the attribute values in neighboring areas for the data set in Figure 4(a). The point S
turns out to be the farthest from the regression line and may be identified as a spatial
outlier.

Definition:  Scatterplot,,,;,., is a point with significant standardized residual error
from the least square regression line in a scatter plot. Assuming errors are normally
distributed, then €gondara = |% > 6 is a common test. Nodes with standardized

residuals €sandara = 5= from regression line Y = mX +b and greater than ¢ or less than
—0 are flagged as possible spatial outliers. The u. and o, are the mean and standard
deviation of the distribution of the error term e.

Lemma 2 Scatterplot,yier 1S a special case of an S-outlier.

Proof: For a Scatterplot,uyier, the neighborhood aggregate function (ﬁ]gr = FE(z) =
%Zye n() J(y) is the average attribute value of neighbors. The difference function is
Fuirp = €= E(z) — ((m* f(z)) + b), where m and b characterize the slope and intercept
of the least square line fitting (f(z), E(z)). The spatial outliers are tested using statistic
test function ST = (|<F<[ > 6).

Figure 6(b) shows the visualization of spatial statistic Z,() method described earlier in
Section 1.1 and Example 1. The X-axis is the location of data points in one dimensional
space; the Y-axis is the value of spatial statistic Z(,) for each data point. We can easily
observe that the point S has the 7, value exceeding 3, and will be detected as spatial
outlier. Note the two neighboring points P and @ of S have Z ) values close to -2 due
to the presence of spatial outlier in their neighborhoods. Example 1 has already shown
that 7, is a special case of S-outlier.
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3 Spatial Outlier Detection: Problem Definition and
Proposed Algorithms

In this section, we provide a formal definition of the problem of designing computationally
efficient techniques for detecting spatial outliers. Earlier sections presented a definition of
spatial outliers and showed that the definition subsumes other quantitative spatial outlier
definitions. Table 1 shows examples of difference function Fy; ;s and statistic test function
ST for different quantitative spatial outlier detection methods. Difference function Fy;ys
computes parameters that are used by statistical test function ST" to verify the outlierness
of a node. We show Fy;;y and ST functions for Spatial statistic Zy(,), Scatterplot, and
Moran scatterplot approaches to summarize the lemmas presented in the earlier section.
For example, in the scatterplot approach, the difference function computes the error term
€, which is the value of the vertical distance between a node and the regression line in the
X —Y plane and is defined as Fy;rf : € = E(x) — (m* f(x) +b), where E(z), the average
attribute value of neighbor nodes of z, is the Y-axis value; f(x), the attribute value of
node z, is the X-axis value; the m and b are the slope and intercept of the scatterplot
line in the X — Y plane.

The computation needs of spatial outlier detection are divided into two parts, model
building and test result computation. Model building computes aggregate functions used
by the difference function Fy; s and statistic test function ST', as shown in the last row of
Table 1. We discuss the computation of the aggregate functions and propose algorithms
for model building and test result computation.

Test Computation
Spatial Outlier Definition Spatial statistic Z3(m) Scatterplot Moran scatterplot
Difference function Fa; s S(@) = [f(2) — B(x)] e = E(z) — (m * f(z)+b) z; = %L L =
X WijZ;
Statistic test function ST [EOEIN I$5Ee| >0 (ZLF D) x
;Wi Z[£(G)]) <0
Aggregate function used in Ls, Os m, b, e, oe Bfs0f
Fgiry and ST

Table 1: Examples of Fy;rr and ST functions for different approaches

3.1 Problem Definition

Given the components of the S-outlier definition, the objective is to design a compu-
tationally efficient algorithm to detect the S-outliers. The components of the S-outlier
definition are restricted via constraints to allow computational efficiency while preserv-
ing the correctness of Lemmas showing that various existing spatial outlier detection
tests (e.g., Scatterplot, Moran scatterplot, Spatial statistic Z,(,)) are special cases of S-
outliers. Thus the algorithms proposed in this section are useful in building models to
detect spatial outliers via a variety of existing techniques. The following optimization
problem characterizes the problem of designing efficient algorithms for detecting spatial
outliers:

10



Spatial Outlier Detection Problem

Given:
e A spatial framework S consisting of locations sy, So, ..., s,
e A neighborhood relationship N C § x S
e An attribute function f :s; & R
e A neighborhood aggregate function fJy . : RN — R, where N is
the maximum neighbor number for a location
e A comparison function Fyifs(f, fav,r)
e Statistic test function ST : R — {True, False}
Design: An efficient algorithm to detect S-outliers,
ie., {s;| s €8, s;isan S — outlier}
Objective:
e Efficiency: to minimize the computation time
Constraints:
e Iyirr and ST are algebraic aggregate functions of
values of f(z) and fJ .
e The size of the data set is much greater than the main memory size
e Computation time is determined by 1/O time

Aggregate functions can be grouped into three categories, namely, distributive, alge-
braic, and holistic [6, 26]. An aggregate function F' is called distributive if there exists a
function G such that the value of F for a data set can be computed by applying a G func-
tion to the value of F'in each partition of the data set. In most cases, F' = G. Examples
of distributive aggregate functions include count, maz, and sum, as shown in Appendix
B. An aggregate function F' is algebraic if F' of a data set can be computed using a fixed
number of distributive aggregates from each partition of the data set. Average, variance,
standard deviation, max N, minN are all algebraic aggregate functions. Illustrations are
available in Appendix B. An aggregate function F' is called holistic if the value of F' for
a data set cannot be computed using a constant number of distributive aggregates from
each partition of the data set. Example of a holistic aggregate function includes median.
We note that algebraic and distributive aggregate functions can be computed by a single
scan of a data set even when the data set is too large to fit in the main memory. In
processing a data set with a size greater than the size of memory, extra disk scans are
required to calculate the holistic aggregate function.

For each node, say z, the attribute function f(z) contains the attribute value of z.
The neighborhood aggregate function é\;m computes a value using the attribute value of
x and the attribute value of z’s neighboring nodes. The distributive aggregate function
computes the aggregate value (e.g., sum, count) of the attribute value and neighborhood
aggregate value for all nodes. The algebraic aggregate function computes the statis-
tic values for all nodes, e.g., mean and standard deviation, and can be derived using
the values computed in the distributive aggregate functions. The comparison function
Fyisp and statistic test function ST for the quantitative spatial outlier definition can be

11



computed using algebraic aggregate functions of values from f(z) and ﬁgr- Table 2
shows the algebraic aggregate functions for different quantitative definitions of spatial
outliers. Each column shows the computation structure of the attribute function, neigh-
borhood aggregate function, distributive aggregate functions, and algebraic aggregate
functions for each spatial outlier detection approach. For example, in the scatterplot
approach, the attribute function is f(x); the neighborhood aggregate function fcf\; , 1S

g
E(z) = %ZyEN(z) f(y); the distributive aggregate functions D% are 3 f(z), Y E(x),

aggr
> f(x)E(z), > f*(x), > E*(z); and the algebraic aggregate functions AJi = are the
slope m and the intercept b of the regression line, and the standard deviation o, of the
error term ¢, all of which can be derived using the distributive aggregate functions.

By utilizing Table 2, we can compute the algebraic aggregate functions in one single
scan of the spatial self-join of the station data set using the neighbor relationship. For
example, the standard deviation of the error term ¢ in the scatterplot approach can
be computed using the values computed in the distributive aggregate functions. In a
naive approach, however, two data scans of the spatial self-join may be used, where the
first scan computes the slope and intercept of the regression line, and the second scan

calculates the statistic values (e.g., mean and standard deviation) of the error term.

Model Building

Outlier Definition Spatial statistic Zg(qa) Scatterplot Moran scatterplot
Attribute function f f(x) f(x) f(x)
Neighborhood aggregate func- S(z) = f(z) — E(x) E(z) = % EyeN(z) f(y)
tion fé\;g,,,
Distributive aggregate functions: | 35 S(=), ¥ 5%(2), | Tf(@), TE(2), L f(2)B(2), & f(z), | T f(=), = (e,
G1 G2 Gk 2
Daagn: Dagars 2t Jagar ooy LI et STy SR ey IFIE]
ﬁléfbraif(;cQaggregatzclfcunctions: us = ==, os = m = OO 5 py = s Of =
aggr’ “taggr> > “aggr \/;[Esz(m) _(E8@N? | = ZI@TEX (@)% i(2) T /(=) E(e) \/l[E £2(2) — (Z1EN?,
" n NY F2(2)=(T f(=)? ’ n n
/ —(m2
pe = 0, 0 = W, where
2
Ses = L f2(a) - (L2, 5y, =
T B @) - [(REED?)

Table 2: Model building to compute the aggregate functions

3.2 Our Approach

The computational task in the spatial outlier detection problem can be divided into two
subtasks: a) design an efficient computation method to compute the global statistical
parameters using a spatial join and b) test whether spatial locations on a given path
are outliers. The first task is called model building; the second task is called test result
computation.

3.2.1 Model Building

An I/O efficient model building algorithm computes the algebraic aggregate functions,
e.g., the mean and standard deviation, in a single scan of a spatial self-join from a spatial
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data set using a neighbor relationship. The computed values from the algebraic aggregate
functions can be used by the difference function Fy;r; and statistic test function ST to
validate the outlierness of an incoming data set. Algorithm 1 shows the steps of the
Model Building algorithm. In the first step, the algorithm retrieves the neighbor nodes
for each data object, say x; then it computes the neighborhood aggregate function (ggr.
The distributive aggregate functions are then aggregated using the attribute function
f(z) and the neighborhood aggregate function (gm. Finally, the algebraic aggregate
functions are computed using the values from the distributive aggregate functions. Note
that the data objects are processed on a page basis to reduce redundant I/O. In other
words, all the nodes within the same disk page are processed before retrieving the nodes

of the next disk page.
Model Building Algorithm

Input: S is a spatial framework;
f is an attribute function;
N is the neighborhood relationship;

é\;gr is the neighborhood aggregate function;
nglgr,ngzgr,..., fg’;r are the distributive aggregate functions;

G1 AG2 AGk
)

Output: Algebraic aggregate functions Aaggr, aggr? - agar

for(i=1;i < S| ;i++){
O;=Get_One Object(i,S); /* Select each object from S */
NNS=Find Neighbor Nodes Set (O;,N,S); /* Find neighbor nodes of O; from S */
for(j=1;j< |NSS|;j++){
O;=Get_One_Object (j,NNS); /* Select each neighbor of O; */

wygr = Compute_and Aggregate(f(0;), f(0;));
/* Add the element to global aggregate functions */
Aggregate Element (DaGglgr, fogr, . Danggr, é\g[gr ,i);

/* Compute the algebraic aggregate functions*/

ol o Gk " . G1 G2 Gk y.

< Aaggra Aaygr= IEEY) Aaggr > = ComputeAlgebralcAggregate(Daggw Daggr= T 7Da,g_97') ’
G1 G2 Gk

return (A7, . Agogrs -1 Aagyr) -

Algorithm 1: Pseudo-code for model construction

Assuming each node has k neighbors, the first operation Get_One_Object() retrieves
data points on the basis of the disk page, thus reducing redundant disk I/O operation.
The Find_Neighbor_Nodes_Set() operation retrieves the data records of the k neighbors
of the current processing node . If the neighbor nodes are not in the memory buffer, extra
I/O operations are required to retrieve the disk pages which contain the data records of
the neighbor nodes. The time needed to locate and transfer a disk block to memory
buffer is in the order of milliseconds, usually ranging from 15 to 60 msec. Therefore,
the operation Find Neighbor_Nodes Set() dominates the computation time. The I/0O
cost of Find Neighbor_Nodes Set() is determined by the clustering efficiency(CE), that
is, how the nodes are grouped into disk pages. If a node and all of its neighbor nodes can
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be arranged in the same disk page, no redundant I/O operation will be required. The
execution time for each data object can be estimated as follows.

For instance, we assume a 500MHz machine, and that the Cycle Per Instruction(CPI)
is 5, the instruction count is 150, the number of neighbors for each data node is 10, that
each disk I/O operation takes 15 % 107 sec (typical: 15 - 60 msec), and that CE denotes
the clustering efficiency. For each data record, the execution time will be CPU time +
(1/O time)*(1-CE)*k = 150 5 * z55bos = 1.5% 1076 + 1.5 10" % (1—CE) sec. The CE
value determines the execution time. The higher the CE value, the shorter the execution
time. We will formally define clustering efficiency in the following section.

Lemma 3 Algebraic aggregate functions needed by the difference function Fyr; and
statistic test function ST can be computed by the Model Building Algorithm in one scan
of the spatial self-join of the data set.

Proof: By definition, an algebraic function F' of a data set can be computed using a fixed
number of distributive aggregates from each partition of the data set. In the Model Build-
ing algorithm, a fixed k£ number of distributive aggregate functions DG, DS> ..., DS¥
are used to store the aggregate values in memory, and the algebraic aggregate functions
are then computed using these aggregate values. If the distributive aggregate functions
can fit inside the memory buffer, the algebraic aggregate functions can be computed using
a single disk scan of the self-join of the data set. Distributive aggregate functions needed
for various quantitative spatial outlier definitions are shown in Table 2. In all cases,
one needs a very small number (less than a dozen) of distributive aggregate functions to

compute the algebraic aggregate functions needed by each spatial outlier definition.

3.2.2 Test Result Computation

The algebraic aggregate functions, e.g., mean and standard deviation, computed in the
Model Building algorithm can be used to verify the spatial outlier of incoming data sets.
The two verification algorithms are Route Outlier Detection (ROD) and Random Node
Verification (RNV). The ROD algorithm detects the spatial outliers from a user specified
route, as shown in Algorithm 2. The RNV procedure checks the outlierness from a set
of randomly generated nodes. The step to detect outliers in both ROD and RNV are
similar, except that the RNV has no shared data access needs across tests for different
nodes. The I/Os for Find Neighbor Nodes_Set() in different iterations are independent
of each other in RNV. We note that the operation Find_Neighbor Nodes_Set() is executed
once in each iteration and dominates the I/O cost of the entire algorithm. The storage
of the data set should support efficient I/O computation of this operation. We discuss
the choice for storage structure and provide experimental comparison in Sections 5 and
6.

Given a route RN within the data set S, the ROD algorithm first retrieves the neigh-
boring nodes from S for each data object, say z, in the route RN; then it computes
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the neighborhood aggregate function ({‘g[gr using the attribute value of z and the at-

tribute values of z's neighbors. The difference function Fys; is computed using the
attribute function f(z), neighborhood aggregate function fé\g’gr, and the algebraic aggre-
gate functions computed in the Model Building algorithm. Node x can then be tested
for outlierness using the statistical test function ST

Route Outlier Detection(ROD) Algorithm

Input: S is a spatial framework;
f is an attribute function;
N is the neighborhood relationship;
é\;gr is a neighborhood aggregate function;
Fuiz; is a difference function;
AaGglgT,AaGg2gr,...,Aanggr are algebraic aggregate functions;
ST is the spatial outlier test function;

RN is the set of node in a route;

Output: QOutlier Set.
for(i=1;i < |RN| ;i++){
O;=Get_One_Object (i,RN); /* Select each object from RN */
NNS=Find Neighbor Nodes Set (O;,N,S) ;
/* Find neighbor nodes of O; from S */
for(j=1;j< |NSS|;j++){
0;=Get_One_Object(j,NNS); /* Select each neighbor of O; */

aygr = Compute_and Aggregate(f(0;), f(0;));

’

Fair; = Compute Difference(f, (fg’gT, AaGglgT, Afgzw, .. ,Aggkgr) ;
if (ST (Fusfy, AaGglgT, AaGgQQT, ey Ag;gkgT)== True){

Add Element (Outlier Set,i); /* Add the element to Outlier_Set */
}

}

return Outlier_Set.

Algorithm 2: Pseudo-code for route outlier detection

4 Analytical Evaluation and Cost Models

The computation of outlier detection algorithms is dominated by the operation
Find_Neighbor Nodes_Set(), which is determined by the clustering efficiency (CE)
parameter of disk page clustering. In this section, we provide simple algebraic cost
models for the I/O cost of outlier detection operations, using the CE measure of physical
page clustering methods. The CE value is defined as follows:

CE = Total number of unsplit edges
- Total numbe of edges

The CE value is determined by the disk page clustering method, the data record size,
and the disk page size. Figure 7 gives an example of CE value calculation. The blocking
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factor, i.e., the number of data records within a page is three, and there are nine data
records. The data records are clustered into three pages. There are a total of nine edges
and six unsplit edges. The CE value of this graph can be calculated as 6/9 = 0.66.

PweA \\\\ OVg //,//
-7 PageC

Figure 7: Example of Clustering Efficiency (CE)

‘ Symbol ‘ Meaning
«a The CE value
B Average blocking factor
N Total number of nodes
L Number of nodes in a route
R Number of nodes in a random set
A Average number of neighbors for each node

Table 3: Symbols used in the Cost Analysis

Table 3 lists the symbols used to develop our cost formulas. « is the CE value. (8
denotes the blocking factor, which is the number of data records that can be stored in
one memory page. A is the average number of nodes in the neighbor list of a node. N is
the total number of nodes in the data set, L is the number of nodes along a route, and
R is the number of nodes randomly generated by users for spatial outlier verification.

Lemma 4 The cost function for the Model Building algorithm is Cpp = %+N*A*(1—a)

Proof: The Model Building algorithm is a nest loop index join. Suppose that we use
two memory buffers: one memory buffer stores the data object x used in the outer loop
and the other memory buffer is reserved for processing the neighbors of x. The outer
loop retrieves all the data records on the page basis and has an aggregated cost of %
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For each node x, on average, o x A neighbors are in the same page as =, and can be
processed without redundant I/O. Additional data page accesses are needed to retrieve
the other (1 — a) * A neighbors, and it takes at most (1 — a) * A data page accesses.
Thus the expected total cost for the inner loopis N+ A% (1 — ). B

Lemma 5 The cost function for the ROD algorithm is Crop = Lx(1—a)+LxAx(1—a) =
Lx(l—a)x(14+A)

Proof: Assume two memory buffers are used for the ROD algorithm; one memory buffer
is reserved for processing the node x to be verified, and the other is used to process the
neighbors of x. For each node x, on the average, its successor node y are in the same page
as x with probability «, and can be processed with no redundant page accesses. The cost
to access all the nodes along a route is Lx (1 — ). To process the neighbors of each node,
ax A neighbors are in the same page as x. Additional data page accesses are needed to re-
trieve the other (1—a)*A neighbors, and it takes at most (1—a)*A data page accesses. B

Lemma 6 The cost function for the RNV algorithm is Cryy = R+ R*x A x (1 — «)

Proof: Suppose two memory buffers are used for the RNV algorithm; one memory buffer
is reserved for processing the node x to be verified, and the other is used to process the
neighbors of x. Since the memory buffer is assumed to be cleared for each consecutive
random node, we need R page accesses to process all these random nodes. For each node
x, a * A neighbors are in the same page as x, and can be processed without extra 1/O.
Additional data page accesses are needed to retrieve the other (1 — a) * A neighbors, and
it takes at most (1 — «) x A data page accesses. Thus, the expected total cost to process
the neighbor of R nodes is R* A * (1 — «).

5 Experiment Design

In the spatial outlier detection algorithm, clustering efficiency(CE) is a dominant factor
for computation cost. The CE value is determined by the disk page clustering method.
In this section, we describe the layout of our experiments and illustrate the candidate
data clustering methods.

5.1 Experimental Layout

The design of our experiments is shown is Figure 8. The input data set, a Twin Cities
Highway Connectivity Graph, was provided by the Minnesota Department of Transporta-
tion and physically stored into data pages using different page clustering strategies and
page sizes. These data pages were then precessed to generate sets of pages of data to
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be used by the Model Building algorithm and Test Result Computation algorithm. The
Model Building algorithm computes the algebraic aggregate functions to be used by the
Test Result Computation algorithm to detect spatial outliers.

We compared three different data page clustering schemes: the Connectivity-
Clustered Access Method (CCAM) [25], Z-ordering [19], and Cell-tree [7]. Other pa-
rameters of interest were the size of the memory buffer, the buffering strategies, the
memory block size (page size), and the number of neighbors. The experimental measures
for the Model Building procedure and the Test Result Computation procedures are the
CE value and I/O cost.

g((?)/r\d’\élr Page Buffer Noof  Buffering

. ; Size  Neighbors Strat

Cell-tree 528 ’ grbors S
Tyvin-Cities l Sets of pages l i i
nghway A Clusering  f data Route Outlier
Connectivity . Detection(ROD).
Graph method Random Node

Test Verification (RNV).
Sets of pag Parameters
of data

Buffer size —
No of neighbors—
Buffering strategy - (Nest loop index join)

Model Building (MB)
CE value
1/0 Cost

Figure 8: Experimental Layout

The experiments were conducted on many spatial frameworks. We present the results
on a representative framework, which is a spatial network with 990 nodes that represents
the traffic detector stations for a 20-square-mile section of the Twin Cities area. We used
a common record type for all the clustering methods. Each record contains a node and
its neighbor-list, i.e., a successor-list and a predecessor-list. The size of each record is
256 bytes.

5.2 Candidate Clustering Methods

In this section, we describe the candidate clustering methods used in the experiments.
Connectivity-Clustered Access Method(CCAM): CCAM [25] clusters the
nodes of the graph via graph partitioning, e.g., Metis [11, 12]. Other graph-partitioning
methods can also be used as the basis of our scheme. In addition, an auxiliary secondary
index is used to support query operations. The choice of a secondary index can be tai-
lored to the application. Since the benchmark graph was embedded in graphical space,
we used the BT tree with Z-order in our experiments. Other access methods such as the
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R-tree and Grid File can alternatively be created on top of the data file as secondary
indices in CCAM to suit the application. In Figure 9, a simple graph and its CCAM are
shown. The left half of Figure 9 shows a spatial graph. Nodes are annotated with the
node-id and geographical coordinates. The node-id is an integer representing the Z-order
of the (x,y) coordinates. For example, the node with the coordinates (1,1) gets a node-id
of 3. The solid lines that connect nodes represent edges. The dashed lines show the
cuts and partitioning of the spatial graph into data pages. The partitions are (0,1,4,5),
(3,6,8,9), (7,12,13,18), and (11,14,15,26). The right half of Figure 9 shows the data pages
and the secondary index. Nodes in the same partition set are stored on the same data
page.

Linear Clustering by Z-order: Z-order [19] utilizes spatial information while im-
posing a total order on the points. The Z-order of a coordinate (x,y) is computed by
interweaving the bits in the binary representation of the two values. Alternatively, Hilbert
ordering may be used. A conventional one-dimensional primary index (e.g. Bt-tree) can
be used to facilitate a search. Figure 10 shows an example of using Z-order as the page
clustering method and B-tree as the primary index for accessing the data file. The nodes
of different partitions are (0,1,3,4), (5,6,7,8), (9,11,12,13), and (14,15,18,26).

Cell Tree: A Cell tree [7] is a height-balanced tree. Each cell tree node corresponds
not necessarily to a rectangular box but to a convex polyhedron. A cell tree restricts
polyhedra to partitions of a BSP (Binary Space Partitioning) in order to avoid overlaps
among sibling polyhedra. Each cell-tree node corresponds to one disk space, and the leaf
nodes contain all the information required to answer a given search query. The cell-tree
can be viewed as a combination of a BSP- and R*-tree, or as a BSP-tree mapped on
paged secondary memory. Figure 11 is an example of using Cell Tree to cluster the node.
The first level binary partition is line H1, and the second level partitions are lines H2
and H3. The partitions are (0,1,3,6), (4,5,7,18), (8,9,11,14), and (12,13,15,26).

Node 0
Node 1
Node 4
Node 5

Node 3
Node 6
Node 8
Node 9

Node 7

Node 12
Node 13
Node 18

Node 11
Node 14
Node 15
Node 26

Data Page

B+ tree index

Figure 9: CCAM Clustering Method
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5.3 Candidate Buffering Strategies

We evaluated three buffering strategies to replace the page in the memory buffer. The
simplest page replacement algorithm is the First In First Out (FIFO) algorithm. A FIFO
replacement algorithm marks the time when each page was bought into the memory
buffer. When a page must be replaced, the oldest page is chosen. The Least Recently
Used (LRU) algorithm selects the page that has not been referenced for the longest period
of time for replacement. In contrast, The Most Recently Used (MRU) algorithm replaces
the page which has been just recently referenced.

6 Experimental Observations and Results

In this section, we illustrate outlier examples detected in the traffic data set, present the
results of our experiments, and test the effectiveness of different page clustering methods.
To simplify the comparison, the I/O cost represents the number of data pages accessed.
This represents the relative performance of the various methods for very large databases.
For smaller databases, the I/O cost associated with the indices should be measured.
We examined the CE measures in the set of experiments that deals with range outlier
detection queries.

6.1 Outliers Detected

We tested the effectiveness of our algorithm on the Twin-Cities traffic data set and detect
numerous outliers, as described in the following examples.

Figure 12 shows one example of traffic flow outliers. Figures 12(a) and (b) are the
traffic volume maps for I-35W north bound and south bound, respectively, on 1/21/1997.
The X-axis is a 5-minute time slot for the whole day and the Y-axis is the label of the
stations installed on the highway, starting from 1 on the north end to 61 on the south end.
The abnormal white line at 2:45PM and the white rectangle from 8:20AM to 10:00AM

Node 0
Node 1
Node 3
Node 4

Node 5
Node 6
Node 7

Key8 Node 8

Node 9

Node 11
Node 12
Node 13

Node 14
Node 15
Node 18

+ 1 Node 26
0 1 2 3 B treeindex Data Page

Figure 10: Z-order Clustering Method
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on the X-axis and between stations 29 to 34 on the Y-axis can be easily observed from
both (a) and (b). The white line at 2:45PM is an instance of temporal outliers, where the
white rectangle is a spatial-temporal outlier. Moreover, station 9 in Figure 12(a) exhibits
inconsistent traffic flow compared with its neighboring stations, and was detected as a
spatial outlier.

6.2 Evaluation of the Proposed Cost Model

We evaluated the I/O cost for different clustering methods for outlier detection pro-
cedures, namely, Model Building (MB), Route Outlier Detection (ROD) and Random
Node Verification (RNV). The experiments used Twin-Cities traffic data with page size
1K bytes, and two memory buffers. Table 4 shows the number of data page accesses
for each procedure under various clustering methods. The CE value for each method is
also listed in the table. The cost function for MB is Cyp = % + NxAx(1—a). The
cost function for RNV is Cgyy = R+ R * A * (1 — a). The cost function for ROD is
Crop =L x (1 —a)* (1+ A), as described in Section 4.2.

Clustering | Parameters Computation | Random Node Verification | Route Outlier Detect | o =
Method | Actual | Predicted | Actual | Predicted | Actual | Predicted | CE
CCAM 628 687 241 246 30 36 | 0.68
Cell-tree 834 919 279 291 45 53 | 0.53
Z-order 1263 1269 349 357 78 79 1 0.31

\ N=773,L=38 R=150,=4,A=2

Table 4: The Actual I/O Cost and Predicted Cost Model for Different Clustering Methods

As shown in Table 3, CCAM produced the lowest number of data page accesses for
the outlier detection procedures. This is to be expected, since CCAM generated the
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Figure 11: Cell-tree Clustering Method
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Figure 12: An Example of an Outlier
highest CE value.

6.3 Evaluation of I/O Cost for the Model Building Algorithm

In this section, we present the results of our evaluation of the I/O cost and CE value for
alternative clustering methods while computing the Model. The parameters of interest
are buffer size, page size, number of neighbors, and neighborhood depth.

The Effect of Buffering: We evaluated the effect of buffering on the performance of
the page clustering methods and buffer replacement strategies. The variable parameters
were the number of buffers available. Figure 13(a) shows the effect of buffering on the
performance of model construction for various clustering methods with fixed page size 2
Kbytes. As can be seen, the performance improves as the number of buffers increases.
The performance ranking for each clustering methods remains the same for different
buffer sizes. Figure 13(b) demonstrates the effect of different buffering strategies on the
number of page accesses. When the buffer size is small (e.g., 4-8), the LRU algorithm
has the best performance. As the number of buffers increases to greater than 10, both
FIFO and LRU have better performance than MRU.

The Effect of Page Size and CE Value: Figures 14 (a) and (b) show the
number of data pages accessed and the CE values respectively, for different page clustering
methods, as the page sizes change. The buffer size is fixed at 32 Kbytes. As can be seen,
a higher CE value implies a lower number of data page accesses, as predicted in the cost
model. CCAM outperforms the other competitors for all four page sizes, and Cell-tree
has better performance than Z-order clustering.

The Effect of Neighborhood Cardinality: We evaluated the effect of varying
the number of neighbors and the depth of neighbors for different page clustering methods.
The neighborhood depth defines the levels of the neighborhood relationship. When the
neighborhood depth D is set to one, only directly connected nodes are considered as
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Figure 13: Effect of Buffering

neighbors; when D is set to be greater than one, then node ns is considered a neighbor
of node n; provided there is a path connecting n; to ny with number of edges less than
or equal to D. For example, there are three nodes, n,, ny, and n., with directed graph
relationship: edge(ng,ny) and edge(ny,n.). If the neighborhood depth is set to two, node
n. will be considered as neighbor of node n, due to a path of length two via node n.
We fixed the page size at 1 Kbytes, buffer size at 4 Kbytes, and used the LRU buffering
strategy. Figure 15 shows the number of page accesses as the number of neighbors for
each node increases from 2 to 10. CCAM has better performance than Z-order and
Cell-tree. The performance ranking for each page clustering method remains the same
for different numbers of neighbors. Figure 15 shows the number of page accesses as the
neighborhood depth increases from 1 to 5. CCAM has better performance than Z-order
and Cell-tree for all the neighborhood depths.

6.4 Evaluation of I/O cost for ROD algorithm

We evaluated the performance for different page clustering methods, page size, and buffer
size when users request an outlier detection along a given route (e.g., I-35W north bound)
on a highway. We also evaluated the performance of RNV algorithm. The experiment
results showed the similar trend as the ROD algorithm.

The effect of buffering: We evaluated the effect of buffering for the outlier
detection along a route. Figure 16 shows the number of page accesses as we increase the
buffer number from 2 to 8. As can be seen, the increase of buffer size does not improve
the performance after a certain buffer size, and CCAM has the best performance.
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Figure 14: Effect of Page Size on Data Page Accesses and Clustering Efficiency (Buffer
Size = 32 Kbytes)

The effect of page size and CE value: Figures 17 (a) and (b) show the number of
data pages accessed and the CE values respectively, for different page clustering methods,
as the page sizes change. The buffer size is fixed at 4 Kbytes. As can be seen, a higher
CE value implies a lower number of data page accesses, as predicted in the cost model.
CCAM outperforms the other competitors for all three page sizes. Note that the Cell
tree has a CE value of 0 and generates the highest number of page accesses when page
size is 0.5 Kbytes and record size is 256 bytes. Cell-tree clusters stations by Euclidean
distance even when there is no edge connecting the stations. This can lead to low CE
values and CE value of 0 when each data page (disk block) can hold only two records.

7 Conclusions and Future Work

In this paper, we focus on detecting spatial outliers in spatial data sets. We propose
a definition of S-outliers which generalizes traditional spatial outliers; we also analyze
computation structures for detecting spatial outliers, design efficient algorithms to detect
outliers, provide cost models for outlier detection procedures, and compare the perfor-
mance of our approach using different data clustering approaches. In addition, we pro-
vide experimental results from the application of our algorithm on a Twin Cities traffic
archival to show its effectiveness and usefulness.

We have evaluated alternative clustering methods for neighbor outlier query process-
ing, including model building, random node verification, and route outlier detection.
Our experimental results show that the connectivity-clustered access method (CCAM),
which achieves the highest clustering efficiency (CE) value, provides the best overall
performance.
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Figure 15: Effect of Neighborhood Cardinality on Data Page Accesses (Page Size = 1
Kbytes, Buffer Size = 4 Kbytes)

Our algorithm is designed to detect spatial outiers outliers using a single non-spatial
attribute from a data set. We are planning to investigate spatial outliers with multiple
non-spatial attributes, such as the combination of volume, occupancy, and speed in the
traffic data set. For multiple attributes, the definition of spatial neighborhood will be the
same, but the neighborhood aggregate function, comparison function, and statistic test
function need to be redefined. The key challenge is to define a general distance function
in a multi-attribute data space.

We will also explore graphical methods for spatial outlier detection. The key issue is
to facilitate the visualization of spatial relationships while highlighting spatial outliers.
For instance, in variogram cloud and scatterplot visualizations, the spatial relationship
between a single spatial outlier and its neighbors is not obvious. It is necessary to transfer
the information back to the original map to check neighbor relationships. As a single
spatial outlier tends to flag not only the spatial location of local instability but also its
neighboring locations, it is important to group flagged locations and identify real spatial
outliers from the group in the post-processing step.

Although spatial outlier detection is the focus of this paper, Figure 12 shows other
types of outliers, such as temporal outliers and spatial-temporal outliers. While our
proposed algorithm can efficiently detect spatial outliers, temporal and spatial-temporal
outliers are detected by post-processing and data visualization. We are planning to
investigate the definitions of temporal and spatial-temporal outliers, as well as to expand
our algorithm to directly detect these outliers.
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A Characterizing the Distribution of the Statistic

Theorem 2 Spatial Statistic S(x) = [f(x) — Eyen(z)(f(y))] is normally distributed if
attribute value f(x) is normally distributed.

Proof:

For a spatially referenced object z;, let X; be a random variable from the normally
distributed attribute function f(x) ~ N(u,0?), where y is the mean and o is the standard
deviation.

Z11, T12, - . -, L1k are k neighbors of 1. Attribute variables X1, X1, ..., Xix of objects
T11,T12,- - -, T1x are normally distributed from N(p1;,0%),1 < 1 < k respectively. Now
let us consider two conditions of neighborhoods as follows:

(1)Assume i.i.d. in the local neighborhood window

1 \ o 0

.0
T ~ Mi11 0 0'%1 . 0
(XlaXlla-"aXIk) N . ) 0 0 ] 0
pr ) N0 0 0 o%
(2)Consider the spatial correlation in the local neighborhood window

2
H1 01 01011PX1,X11
2
T H11 . 011
(XlaXlla"'aXlk) ~ N )
2
M1k Ok

Based on the definition of neighborhood, for each spatially referenced object x, the
average attribute values Eycn ) (f(y)) of 2's k neighbors can be derived from f(z). Since
the attribute function f(z) is normally distributed and an average of normal variables is
also normally distributed[4], the average attribute values Eycn(5)(f(y)) over neighbors is
also a normal distribution for a fixed cardinality neighborhood.

We apply a normal linear transformation to derive S(z), and the transformation
guarantees the normal distribution [4]. Let X, be a random variable of Eye ()

Xy
- 11 1 X1 ,
S(m):Xl_Xk:(la_E:_Ea---a_E) ) NN(A,U,k,AEA),
Xk
H1 0% 01011PX1,X11
_ 11 1 _ | e _ o
WhereA—(l,—E,—E,...,—E),/j,k— ’E_
M1k . . ] a%k

zation « = Xe)—Au
Standardization : ==t ~ N(0,1)

Since the attribute value and the average attribute value over neighbors are two

normal variables, the distribution of the difference S(x) of each data object x and the
average attribute value of z's neighbors is also normally distributed. l
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B Aggregate Function

B.1 Distributive Aggregate Function

An aggregate function F' is called distributive if there exists a function G such that the
value of F' for a data set can be computed by applying a G function to the value of F' in
each partition of the whole data set. In most cases, F' = G. For example, in Figure 18,
the computation of distributive aggregate functions for a two-dimensional matrix M,
F(M;;) = G(F(Cj)) = G(F(R;)), where M,; represents the elements of a two-dimensional
matrix, C; denotes each column of the matrix, and R; denotes each row of the matrix.
Consider the aggregate functions Min and Count. In the first example, F' = Min and
G = Min, since Min(M;;) = Min(Min(C;)) = Min(Min(R;)). In the second example,
F = Count, G = Sum, since Count(M;;) = Sum(Count(C;)) = Sum(Count(R;)).
Other distributive aggregate functions include Max and Sum. Note that “null” valued
elements are ignored in computing aggregate functions.

Distributive Aggregate Function; Min Distributive Aggregate Function: Count

MIiT c[1] [2] ¢[3] Min(RIi]) MIi] c[1] [2] ¢[3] Count(RIi])

Rl 1]2]3 1 Rl 1/2]3 3
R[2] 4 |null| g 4 R[2] 4 |null| 6 2
R3] 882 2 R3 882 3
R4 7|5l 5 R4 7|5l 2
MinCll) 1]2]2 1 Count(C[j]) 4 |3 |3 10

Min(M[ij] = Count(M[i j] =

Min(Min of row) = Sum(Count of row) =

Min(Min of column) Sum(Count of column)

Figure 18: Computation of distributive aggregate functions

B.2 Algebraic Aggregate Function

An aggregate function F' is algebraic if F' of a data set can be computed using a fixed num-
ber of sub-aggregates from each partition of the data set. Average, variance, standard
deviation, maxN, minN are all algebraic aggregate functions. In Figure 19, for example,
the computations of average and variance for a two-dimensional matrix M are shown.
The average of elements in the data set M can be computed from sum and count values
of the one dimensional sub-matrix (e.g., rows or columns). The variance can be derived
from the count, sum(i.e. Y, X;), and sumof sq(i.e. >, X?) of rows or columns. Similar
techniques apply to other algebraic functions.

B.3 Holistic Aggregate Function

An aggregate function F' is called holistic if the value of F' for a data set cannot be
computed using a constant number of sub-aggregates from each partition of the data set.
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Algebraic Aggregate Function: Average Algebraic Aggregate Function: Variance

y Avg Sum Count 3 Var Count Sum Sum of Sq
MI] 1) o2 o3 (RI) (RLT) (RLD) M1 o1] 2] 3] (RID) (RIi) (RIiD) (RIiT)
R 1123 2 6 3 Rl 112|3 06 3 6 14
RIZ 4 |null6 5 10 2 RIZ 4 nuljg 1 2 10 5
R3] 8/8/2 6 18 3 R} 8/8/2 8 3 18 1
R4 7|5l 6 12 2 R4 75l 1 2 12 74
Avg(Clil) 5| 536 46 4 | va(clil) 5| 6 [28 604 4 F(M) =
smcll) 20| 1511 =22 MR cont(Cl)) 4]3]3 23 (Sumof Sq(Ril)-
4 - Z a9y =1
Count(Cl) 4 ‘ 3 ‘ 3 ¥ &, Count(R]i]) sun(cli) 20‘ 15‘ " FlCour;t(R[l]) (ﬁ(SU a )))2
- 5 Sum(Cf)) . Ea— A
= con(Cll) Sumof $a(C) 130| 93] 9 (2 CountR{)f

Figure 19: Computation of algebraic aggregate functions

To compute the value of F', we need to access the whole data set. Examples of holistic
function include median, mostFrequent, and rank.
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