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Abstract

A spatial outlier is a spatially referenced object whose
non-spatial attribute values are significantly different from
the values of its neighborhood. Identification of spatial out-
liers can lead to the discovery of unexpected, interesting,
and useful spatial patterns for further analysis. Previous
work in spatial outlier detection focuses on detecting spa-
tial outliers with a single attribute. In the paper, we propose
two approaches to discover spatial outliers with multiple
attributes. We formulate the multi-attribute spatial outlier
detection problem in a general way, provide two effective
detection algorithms, and analyze their computation com-
plexity. In addition, using a real-world census data, we
demonstrate that our approaches can effectively identify lo-
cal abnormality in large spatial data sets.

1 Introduction

Outliers have been informally defined as observations
in a data set which appear to be inconsistent with the re-
mainder of that set of data [4], or which deviate so much
from other observations so as to arouse suspicions that they
were generated by a different mechanism [9]. The identi-
fication of outliers can lead to the discovery of unexpected
knowledge and has a number of practical applications in ar-
eas such as credit card fraud detection, athlete performance
analysis, voting irregularity analysis, and severe weather
prediction.

Spatial data set could be modelled as a collection of spa-
tially referenced objects, such as roads, buildings and cities.
Attributes of spatial objects fall into two categories: spatial
attributes and non-spatial attributes. The spatial attributes
include location, shape and other geometric or topologi-
cal properties. Non-spatial attributes include length, height,

owner, building age and name. A spatial neighborhood [28]
of a spatially referenced object is a subset of the spatial data
based on the spatial dimension using spatial relationships,
e.g., distance and adjacency. Comparisons between spa-
tially referenced objects are based on non-spatial attributes.

In a spatial context, local anomalies are of paramount
importance. Spatial outliers are spatially referenced objects
whose non-spatial attribute values are significantly different
from those of other spatially referenced objects in their spa-
tial neighborhoods. Informally, a spatial outlier is a local in-
stability, or an extreme observation with respect to its neigh-
boring values, even though it may not be significantly differ-
ent from the entire population. Detecting spatial outliers is
useful in many applications of geographic information sys-
tems and spatial databases [21, 22, 25]. These application
domains include transportation, ecology, public safety, pub-
lic health, climatology, and location based services. In these
applications, there may be more than one non-spatial at-
tributes associated with each spatial location. For example,
in census data set, each census track contains several non-
spatial attributes, including population, population density,
income, poverty, housing, education, and race [27]. Detect-
ing outliers from these spatial data with multiple attributes
will help demographist and social worker to identify local
anomalies for further analysis.

This paper focuses on detecting spatial outlier with mul-
tiple attributes. We formulate spatial outlier detection prob-
lems in a general way, propose two effective algorithms,
analyze their computational costs, and demonstrate the ef-
fectiveness of our proposed approaches using a real-world
census data set. The paper is organized as follows. Section
2 reviews related work in outlier detection. In Section 3, we
formulate the problem, propose two spatial outlier detec-
tion algorithms, and analyze their computational complex-
ity. The experimental results and analysis are provided in
Section 4. Finally, we conclude in Section 5 with directions
for future work.
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2 Related Work

Numerous outlier detection tests, known as discordancy
tests, have been studied in the field of statistics. These tests
are developed for different circumstances, depending on the
data distribution, the number of expected outliers, and the
types of expected outliers [4, 12]. The main idea is to fit
the data set to a known standard distribution, and develop
a test based on distribution properties. In computational
geometry, each data object is represented as a point in a
k-dimensional space with an assigned depth. Depth-based
approaches [18,20,26] organize data objects in convex hull
layers in the data space according to peeling depth, and out-
liers are expected to be found from data objects with shal-
low depth values. In the context of KDD, many outlier de-
tection algorithms have been recently proposed. They pro-
vide outlier tests based on different concepts, such as dis-
tance, density, and local property. Knorr and Ng presented
the notion of distance-based outliers [13, 14]. For a k di-
mensional data set T with N objects, an object O in T is
a DB(p,D)-outlier if at least a fraction p of the objects in
T lies greater than distance D from O. Ramaswamy et al.
proposed a formulation for distance-based outliers by cal-
culating the distance of a point from its kth nearest neigh-
bor [19]. After ranking points by the distance to its kth

nearest neighbor, the top n points are declared as outliers.
Breunig et al. introduced the notion of a “local” outlier
in which the outlier-degree of an object is determined by
taking into account the clustering structure in a bounded k
nearest neighborhood of the object [6, 11]. The major lim-
itation of applying the above algorithms for spatial outlier
detection is that they do not distinguish between spatial and
non-spatial attributes and are not suitable for detecting spa-
tial outliers.

Recent work by Shekhar et al. introduced a method for
detecting spatial outliers in graph data set [23, 24]. The
method is based on the distribution property of the differ-
ence between an attribute value and the average attribute
value of its neighbors. Several spatial outlier detection
methods are also available in the literature of spatial statis-
tics. These methods can be generally grouped into two cat-
egories, namely graphic approaches and quantitative tests.
Graphic approaches are based on visualization of spatial
data which highlights spatial outliers. Example methods
include variogram clouds and pocket plots [8, 17]. Quan-
titative methods provide tests to distinguish spatial outliers
from the remainder of data. Scatterplot and Moran scatter-
plot are two representative approaches. A Scatterplot [7,15]
shows attribute values on the X-axis and the average of the
attribute values in the neighborhood on the Y -axis. A least
square regression line is used to identify spatial outliers. A
scatter sloping upward to the right indicates a positive spa-
tial autocorrelation; a scatter sloping upward to the left in-

dicates a negative spatial autocorrelation. Nodes far away
from the regression line are flagged as possible spatial out-
liers. A Moran scatterplot [16] is a plot of normalized at-
tribute value against the neighborhood average of normal-
ized attribute values. A Moran scatterplot contains four
quadrants. The upper left and lower right quadrants indi-
cate a spatial association of dissimilar values: low values
surrounded by high value neighbors and high values sur-
rounded by low value neighbors. Spatial outliers can be
identified from these two quadrants. The above methods
for detecting spatial outliers focus on the case of single at-
tribute.

For detecting outlier with multiple attributes, traditional
outlier detection approaches could not be used properly due
to the sparsity of the data objects in high dimensional data
space [3]. It has been shown that the distance between any
pair of data points in high dimensional space is so similar
that either each data point or none data point can be viewed
as an outlier if the concepts of proximity is used to define
outliers [1]. As a result, using traditional Euclidean distance
function cannot effectively get outliers in high dimensional
data set due to the averaging behavior of the noisy and irrel-
evant dimensions. To address this problem, two categories
of research work have been conducted. The first is to project
the high dimensional data to low dimensional data that has
abnormally low local density [2, 3, 5, 10]. The second ap-
proach is to re-design distance functions to accurately de-
fine the proximity relationship between data points [1].

All these multi-attribute outlier detection approaches
deal with non-spatial attributes. For spatial outlier de-
tection, there are two dimensions: spatial dimension and
non-spatial dimension. In detecting spatial outliers, spa-
tial and non-spatial dimensions should be considered sepa-
rately. The spatial dimension is used to define the neighbor-
hood relationship, while the non-spatial dimension is used
to define the distance function.

3 Algorithms

In this section, we define the multi-attribute spatial out-
lier detection problem and propose our algorithms. The first
algorithm is based on computing the average of attribute
values of neighbors, while the second algorithm is based on
computing the median of attribute values of neighbors.

3.1 Problem Formulation

Suppose q measurements (attribute values)
y1, y2, · · · , yq (q ≥ 1) are made on the spatial object
x. We use y to denote the vector (y1, y2, · · · , yq)T ,
where T represents the transpose operation. That is,
y = (y1, y2, · · · , yq)T . Given a set of spatial points
X = {x1,x2, . . . ,xn} in a space with dimension p ≥ 1,
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an attribute function f is defined as a map from X to Rq

(the q dimensional Euclidean space) such that for each
spatial point x, f(x) equals the attribute vector y. For
convenience, we write

yi = f(xi)
= (f1(xi), f2(xi), . . . , fq(xi))T

= (yi1, yi2, · · · , yiq)T

for i = 1, 2, . . . , n. Denote the set {y1,y2, . . . ,yn} by A.
For a given integer k, let NNk(xi) denote the k nearest

neighbors of point xi for i = 1, 2, . . . , n. A neighborhood
function g is defined as a map from X to Rq such that the
jth component of g(x), denoted gj(x), returns a summary
statistic of attribute values yj of all the spatial points inside
NNk(x).

For the purpose of detecting spatial outliers, we com-
pare all of the components of y at x with the corresponding
quantities from the neighbors of x. A comparison function
h is a function of f and g, whose domain is X and range is
in Rr with r ≤ q. Examples of h include h = f − g, which
represents a map from X to Rq with r = q, and h = f1/g1,
a map from X to R with r = 1. Denote h(xi) by hi.

Given the attribute function f , neighborhood func-
tion g, and comparison function h, a point xi is an S-
outlier (spatial outlier) if hi is an extreme point of the set
{h1, h2, . . . , hn}. We note that the definition is very gen-
eral and depends on the choices of functions g and h. The
following problem characterizes the task of designing algo-
rithms for detecting spatial outliers:

Spatial Outlier Detection Problem

Given:
• A set of spatial points X = {x1,x2, . . . ,xn}
• Neighborhoods NNk(x1), NNk(x2), . . . , NNk(xn)
• An attribute function f : X → Rq

• A neighborhood function g : X → Rq

• A comparison function h : X → Rr

Design:
• Algorithms to detect spatial outliers

3.2 Spatial Outlier Detection Algorithms

We introduce two multi-attribute spatial outlier detection
algorithms. Different choices of g and h may lead to differ-
ent outliers. The criterion on the selection of g and h is that
most of the resulting outliers should possess practical mean-
ings. For example, examining outliers should often lead to
causation investigations.

Detecting unusual attribute vector by the difference be-
tween f and g, i.e., h = f − g, is available. We do this

through checking the Mahalanobis distance between h(x)
and the average h value from the neighbors of x. The Ma-
halanobis approach considers both the average value and its
variance and covariance of the attributes measured. It ac-
counts for ranges of variance between attributes and com-
pensates for interactions (covariance) between attributes.
To describe this method, let us first note the following:
a) Under certain conditions, we may show that h(x) fol-
lows a multivariate normal distribution. b) If h(x) is dis-
tributed as Nq(µ,Σ), i.e., q-dimensional vector h(x) fol-
lows a multivariate normal distribution with mean vec-
tor µ and variance-covariance matrix Σ, then (h(x) −
µ)T Σ−1(h(x)−µ) is distributed as χ2

q , where χ2
q is the chi-

square distribution with q degrees of freedom. Therefore the
probability that h(x) satisfies (h(x)−µ)T Σ−1(h(x)−µ) >
χ2

p(α) is α. Here χ2
q(α) is the upper (100α)th percentile of

a chi-square distribution with q degrees of freedom. For
example, χ2

10(0.05) = 18.31.
Now suppose there are n spatial referenced objects x1,

· · ·, xn. For the sample h(x1), · · ·, h(xn), calculate the
sample mean

µs =
1
n

n∑

i=1

h(xi)

and sample variance-covariance matrix

Σs =
1

n − 1

n∑

i=1

[h(xi) − µs][h(xi) − µs]
T .

Then we should expect that the probability of h(x) satis-
fying (h(x) − µs)T Σ−1

s (h(x) − µs) > χ2
q(α) is roughly

α.
Set d2(x) = (h(x) − µs)T Σ−1

s (h(x) − µs). For
any x, if d2(x) is unusually large, x will be teated as a
spatial outlier. In other words, if d2(x) > θ, x is a spatial
outlier, where θ is a predetermined number depending on
a specified confidence level. It follows from the above
discussion that many algorithms for detecting S-outliers
are available. Choosing g to be the average attribute vectors
from the neighborhood yields the following algorithm.

Spatial Outlier Detection Algorithm 1:
Mean Algorithm

1. Given the spatial data set X = {x1,x2, . . . ,xn}, pre-
defined threshold θ, attribute function f , and the num-
ber k of nearest neighbors

2. For each fixed j (1 ≤ j ≤ q), standardize the at-

tribute function fj , i.e., fj(xi) ← fj(xi)−µfj

σfj
for

i = 1, 2, . . . , n.

3. For each spatial point xi, compute the k nearest neigh-
bor set NNk(xi)
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4. For each spatial point xi, compute the neighborhood
function g such that gj(xi) = average of the data set
{fj(x) : x ∈ NNk(xi)}, and the comparison function
h(xi) = f(xi) − g(xi).

5. Compute d2(xi) = (h(xi) − µs)T Σ−1
s (h(xi) − µs).

If d2(xi) > θ, xi is a spatial outlier w.r.t. A.

We call the above algorithm Mean algorithm, since the
algorithm is based on computing the average attribute value
of neighborhoods.

Replacing g in the above algorithm by the “median” of
the attribute vectors from the neighborhood, we have the
following detection algorithm. The motivation of using
median is the fact that median is a robust estimator of
the “center” of a sample. Since Algorithm 2 focuses on
computation based on the difference between the attribute
value of each point and the median value of its k nearest
neighbors, we call it Median Algorithm.

Spatial Outlier Detection Algorithm 2:
Median Algorithm

1. Given the spatial data set X = {x1,x2, . . . ,xn}, pre-
defined threshold θ, attribute function f , and the num-
ber k of nearest neighbors

2. For each fixed j (1 ≤ j ≤ q), standardize the at-

tribute function fj , i.e., fj(xi) ← fj(xi)−µfj

σfj
for

i = 1, 2, . . . , n.

3. For each spatial point xi, compute the k nearest neigh-
bor set NNk(xi) based on its spatial location.

4. For each spatial point xi, compute the neighborhood
function g such that gj(xi) = median of the data set
{fj(x) : x ∈ NNk(xi)}, and the comparison function
h(xi) = f(xi) − g(xi).

5. Compute d2(xi) = (h(xi) − µs)T Σ−1
s (h(xi) − µs).

If d2(xi) > θ, xi is a spatial outlier w.r.t. A.

We note that in the above two algorithms, if the expected
number m of S-outliers is given, instead of θ, then those
m outliers could be picked up according to the m largest
values of d2.

3.3 Computational Complexity

For the Mean Algorithm, Step 2 is to standardize the at-
tribute function, which costs O(qn). In Step 3, the neigh-
borhood is computed for each spatial point, in which a k
nearest neighbor (KNN) query is issued. The time com-
plexity is then based on that of KNN query. For the KNN
query, there are two choices. We can use a grid-based ap-
proach, which processes KNN query in constant time if the

grid directory resides in memory, leading to a complexity of
O(n). If an index structure (e.g. R-tree) exists for the spatial
data set, spatial index can be used to process KNN query,
which has complexity of O(logn), leading to a complex-
ity of O(nlogn). For Step 4, the computation of neighbor-
hood function g and comparison function h takes O(qkn).
In Step 5, the computation of Mahalanobis distance costs
O(q2*n). In summary, the total computational cost for the
Mean Algorithm is O(qn) + O(n) + O(qkn) + O(q2 ∗ n)
for grid-based structure, or O(qn)+O(nlogn)+O(qkn)+
O(q2 ∗ n) for index-based structure. If n � k and n � d,
the total time complexity is O(n) for grid-based structure,
or O(nlogn) for index-bases structure. The time complex-
ity is then primarily determined by the KNN query. The
Median Algorithm has the same time complexity as the
Mean Algorithm. The only difference between the two al-
gorithms lies in the computation of neighborhood function
g. Nevertheless, the time complexity for computing average
and median for k neighbors is the same, i.e., O(k).

4 Experiments

We empirically evaluated our detection algorithms by
mining a real-life census data set. The experiment results
indicate that our algorithms can effectively identify spatial
outliers with multiple attributes.

The census data is the most detailed tabulation of
American demographic data compiled by U.S. Census Bu-
reau [27]. It contains detailed data on population, race
and ethnicity, age and sex, education, employment, income,
poverty, housing, and many other attributes for each of
the following different levels of geography: 1) the United
State and major regions of the country; 2) each state and
metropolitan area; 3) all 3000+ counties in the United
States; 4) municipalities, census tracts, and block groups.
More than 3000 counties were processed in our experiment.
The location of each county is determined by one or more
polygons consisting of hundreds of longitude and latitude
pairs. The neighborhoods were chosen to be dynamic, i.e.,
the neighborhood of a county was chosen to be the set of
adjacent counties.

In the experiment, we used the following 11 attributes:
population in 2001, population percent change from April 1
2000 to July 1 2001, population percent change from 1990
to 2000, percentage of persons under 5 years old in 2000,
percentage of persons under 18 years old in 2000, percent-
age of persons over 65 years old in 2000, percentage of per-
sons under 5 years old in 2000, percentage of persons under
18 years old in 2000, percentage of White persons, percent-
age of Black persons, percentage of Asian persons, and per-
centage of American Indian persons. The experiment was
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Mahalanobis Pop 2000-2001 1990-2000 ≤ 5 ≤ 18 ≥ 65 Female White Black Indian Asian
Rank County Distance 2001 change change % % % % % % % %

1 Los Angeles, CA 1142 32.15 0.37 0.23 1.28 0.78 1.24 0.06 2.24 0.06 0.12 7.08
2 Cook, IL 402 17.71 0.41 0.36 0.82 0.15 0.75 0.58 1.77 1.18 0.20 2.56
3 San Francisco, CA 395 2.28 0.56 0.23 2.06 3.44 0.27 0.664 2.18 0.07 0.18 19.11
4 Santa Clara, CA 266 5.31 0.56 0.08 0.72 0.24 1.29 0.61 1.93 0.41 0.14 15.80
5 Menominee, WI 262 0.29 0.42 0.05 2.96 4.20 1.53 0.11 4.56 0.60 13.41 0.49
6 Shannon, SD 244 0.26 0.98 0.92 4.26 6.21 2.43 0.19 5.00 0.60 14.49 0.49
7 Douglas, CO 190 0.36 6.19 11.2 3.05 1.91 2.58 0.19 0.50 0.53 0.18 1.10
8 Buffalo, SD 189 0.29 0.60 0.27 3.98 4.95 2.02 0.92 4.26 0.60 12.52 0.49
9 Rolette, ND 188 0.26 0.04 0.24 2.31 3.45 1.24 0.11 3.71 0.60 11.17 0.42
10 Sioux, ND 184 0.29 0.04 0.22 3.89 4.64 2.24 0.76 4.39 0.60 12.99 0.49

Table 1. The top 10 spatial outlier candidates detected by Mean algorithm and their associated
standardized attribute values

Mahalanobis Pop 2000-2001 1990-2000 ≤ 5 ≤ 18 ≥ 65 Female White Black Indian Asian
Rank County Distance 2001 change change % % % % % % % %

1 Los Angeles, CA 1306 32.15 0.37 0.23 1.28 0.78 1.24 0.06 2.24 0.06 0.12 7.08
2 Cook, IL 441 17.71 0.41 0.36 0.82 0.15 0.75 0.58 1.77 1.18 0.20 2.56
3 San Francisco, CA 395 2.28 0.56 0.23 2.06 3.44 0.27 0.664 2.18 0.07 0.18 19.11
4 Santa Clara, CA 367 5.31 0.56 0.08 0.72 0.24 1.29 0.61 1.93 0.41 0.14 15.80
5 Shannon, SD 300 0.26 0.98 0.92 4.26 6.21 2.43 0.19 5.00 0.60 14.49 0.49
6 Menominee, WI 259 0.29 0.42 0.05 2.96 4.20 1.53 0.11 4.56 0.60 13.41 0.49
7 Sioux, ND 238 0.29 0.04 0.22 3.89 4.64 2.24 0.76 4.39 0.60 12.99 0.49
8 Douglas, CO 205 0.36 6.19 11.2 3.05 1.91 2.58 0.19 0.50 0.53 0.18 1.10
9 Buffalo, SD 198 0.29 0.60 0.27 3.98 4.95 2.02 0.92 4.26 0.60 12.52 0.49
10 Harris, TX 191 11.35 0.65 0.59 1.84 1.10 1.80 0.14 1.62 0.66 0.18 2.75

Table 2. The top 10 spatial outlier candidates detected by Median algorithm and their associated
standardized attribute values

Figure 1. US Population in the Year 2001

conducted on data of all counties in the United States. Fig-
ure 1 shows an example attribute population in year 2001
used in our experiment. The high population areas in the
east coast, west coast, and around Great Lakes region can
be clearly observed.

The multiple attributes may have different magnitudes.
For example, population of a county is usually more than
10,000, but the percentage of population change is mostly

less than 1. So population of a county may dominate the
value of difference function. To avoid this negative impact,
we standardized the attribute values for each attribute.

The experiment results are shown in Tables 1 and 2.
Note that the attribute values for each county have been
standardized. The tables show only top 10 counties which
are most likely to be spatial outliers. As can be seen from
Tables 1 and 2, Los Angeles is selected as top spatial out-
lier by both algorithms, because it has the largest Maha-
lanobis distance, 1142 for the Mean Algorithm and 1306
for the Median Algorithm. Specifically, the largest distance
mainly comes from the contribution of the corresponding
attribute population (standardized value 32.15), compared
with its neighboring counties, e.g., Orange Co. (9.43), Ven-
tura Co.(2.28), San Bernardino Co. (5.64), and Kern Co.
(1.97). The second spatial outlier, Cook Co, which encom-
passes the downtown of Chicago, is also identified due to
its high population (standardized value 17.71), compared
with its neighboring counties, e.g., Dupage Co. (2.76) Will
Co. (1.5), Lake Co.(1.32), Kane Co. (1.12), and McHenry
Co.(0.6). The third and fourth spatial outliers, San Fran-
cisco, CA and Santa Clara, CA, have high percentage of
Asian population (standardized Value 19.11 and 15.80, re-
spectively) compared with the Asian population of their
neighboring counties. The remaining seven counties in both
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tables were detected as spatial outliers because the total
contributions to the Mahalanobis distance from various at-
tribute values are significant. From Tables 1 and 2, we can
also see that the Mean Algorithm and the Median Algorithm
have 9 outliers in common and the rankings of the top 4
outliers are in the same order. This shows that both of the
algorithms are effective in detecting spatial outliers.

5 Conclusion

In this paper we propose two spatial outlier detection al-
gorithms using Mahalanobis distance to analyze spatial data
with multiple attributes: one algorithm based on the aver-
age of the attribute values from neighborhoods and the other
based on median of the attribute values. The experimental
results indicate our methods are effective in practical use.
Furthermore, it carries the important bonus of ordering the
spatial outliers with respect to their degree of outlierness
based on the Mahalanobis distance.

Spatial outlier detection is the focus of this paper. How-
ever, there are other types of outliers, such as temporal out-
liers and spatial-temporal outliers, and region outliers where
the data contains two neighboring regions with different
ranges of attribute values. We are planning to investigate
the definitions of these kinds of outliers, as well as to ex-
pand our algorithm to identify these local anomalies. Our
algorithms assume that the data set can be loaded into mem-
ory to process. We are planning to investigate the issue of
handling a large, disk-resident spatial data set. The goal will
be to minimize the number of page reads or passes over the
data set.
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